2017届九年级数学上册第26章解直角三角形26.4解直角三角形的应用第2课时教学课件.pptx_第1页
2017届九年级数学上册第26章解直角三角形26.4解直角三角形的应用第2课时教学课件.pptx_第2页
2017届九年级数学上册第26章解直角三角形26.4解直角三角形的应用第2课时教学课件.pptx_第3页
2017届九年级数学上册第26章解直角三角形26.4解直角三角形的应用第2课时教学课件.pptx_第4页
2017届九年级数学上册第26章解直角三角形26.4解直角三角形的应用第2课时教学课件.pptx_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

26.4解直角三角形的应用第2课时,在直角三角形中,除直角外,由已知两元素求其余未知元素的过程叫解直角三角形.,1.解直角三角形,(1)三边之间的关系:,a2b2c2(勾股定理);,2.解直角三角形的依据,(2)两锐角之间的关系:,AB90;,(3)边角之间的关系:,sinA,(必有一边),知识回顾,45,30,450,60,45,200,200,45,30,30,45,450,生活中图例1,生活中图例2,如图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1Bl的倾斜程度比较大,说明A1A.从图形可以看出,即tanAltanA.在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.,情境创设,坡度与坡角坡面的铅直高度h和水平宽度的比叫做坡度(或叫做比),一般用i表示.即i,常写成i=1m的形式如i=12.5.把坡面与水平面的夹角叫做坡角,情境创设,小华同学去坡度为12的土坡上种树,要求株距(相邻两树间的水平距离)是4m,斜坡上相邻两树间的坡面距离为_m,A,B,C,1:2,4m,试一试,例1如图26-4-5所示,铁路路基的横断面为四边形ABCD,其中,BC/AD,A=D,根据图中标出的数据计算路基下底的宽和坡角.(结果精确到1),典型例题,解:如图26-4-6,作BEAD,CFAD,垂足分别为E,F.在四边形BEFC中,BC/AD,AEB=DFC=90四边形BEFC为矩形BC=EF,BE=CF,在RtABE和RtDCF中,A=D,AEB=DFC,BE=CFRtABERtDCFAE=DF在RtABE中,BE=4,AE=5AD=AE+EF+FD=BC+2AE=10+25=20即路基下底的宽为20m,坡角约为3839.,如图,一堤坝的坡角ABC=60,坡面长度AB=24米(图为横截面)为了使堤坝更加牢固,需要改变堤坝的坡面,为使得坡面的坡角ADB=50,则应将堤坝底端向外拓宽(BD)多少米?(结果精确到0.1米)(参考数据:1.73,sin500.77,cos500.64,tan501.20),练习,解:过A点作AECD于E在RtABE中,ABE=60,AE=ABsin60=24=1220.76米,,BE=ABcos60=24=12米,在RtADE中,ADE=50,DE=17.3米,DB=DEBE5.3米答:此时应将坝底向外拓宽大约5.3米,知道能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.,总结反思,解直角三角形的应用:,(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);,(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论