2013年全国高校自主招生数学模拟试卷一_第1页
2013年全国高校自主招生数学模拟试卷一_第2页
2013年全国高校自主招生数学模拟试卷一_第3页
2013年全国高校自主招生数学模拟试卷一_第4页
2013年全国高校自主招生数学模拟试卷一_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年全国高校自主招生数学模拟试卷一一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥PABCD中,APC=60,则二面角APBC的平面角的余弦值为( )A. B. C. D. 2. 设实数a使得不等式|2xa|+|3x2a|a2对任意实数x恒成立,则满足条件的a所组成的集合是( )A. B. C. D. 3,33. 将号码分别为1、2、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。甲从袋中摸出一个球,其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b。则使不等式a2b+100成立的事件发生的概率等于( )A. B. C. D. 4. 设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(xc)=1对任意实数x恒成立,则的值等于( )A. B. C. 1D. 15. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( )6. 已知A与B是集合1,2,3,100的两个子集,满足:A与B的元素个数相同,且为AB空集。若nA时总有2n+2B,则集合AB的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A(3,0),B(1,1),C(0,3),D(1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为_。8. 在ABC和AEF中,B是EF的中点,AB=EF=1,BC=6,若,则与的夹角的余弦值等于_。9. 已知正方体ABCDA1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于_。10. 已知等差数列an的公差d不为0,等比数列bn的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于_。11. 已知函数,则f(x)的最小值为_。12. 将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有_种(用数字作答)。三、解答题(本题满分60分,每小题20分)13. 设,求证:当正整数n2时,an+10成立的事件发生的概率等于( D )A. B. C. D. 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。由不等式a2b+100得2ba+10,于是,当b=1、2、3、4、5时,每种情形a可取1、2、9中每一个值,使不等式成立,则共有95=45种;当b=6时,a可取3、4、9中每一个值,有7种;当b=7时,a可取5、6、7、8、9中每一个值,有5种;当b=8时,a可取7、8、9中每一个值,有3种;当b=9时,a只能取9,有1种。于是,所求事件的概率为。4. 设函数f(x)=3sinx+2cosx+1。若实数a、b、c使得af(x)+bf(xc)=1对任意实数x恒成立,则的值等于( C )A. B. C. 1D. 1解:令c=,则对任意的xR,都有f(x)+f(xc)=2,于是取,c=,则对任意的xR,af(x)+bf(xc)=1,由此得。一般地,由题设可得,其中且,于是af(x)+bf(xc)=1可化为,即,所以。由已知条件,上式对任意xR恒成立,故必有,若b=0,则由(1)知a=0,显然不满足(3)式,故b0。所以,由(2)知sinc=0,故c=2k+或c=2k(kZ)。当c=2k时,cosc=1,则(1)、(3)两式矛盾。故c=2k+(kZ),cosc=1。由(1)、(3)知,所以。5. 设圆O1和圆O2是两个定圆,动圆P与这两个定圆都相切,则圆P的圆心轨迹不可能是( A )解:设圆O1和圆O2的半径分别是r1、r2,|O1O2|=2c,则一般地,圆P的圆心轨迹是焦点为O1、O2,且离心率分别是和的圆锥曲线(当r1=r2时,O1O2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。当r1=r2且r1+r22c时,圆P的圆心轨迹如选项B;当02c|r1r2|时,圆P的圆心轨迹如选项C;当r1r2且r1+r22c时,圆P的圆心轨迹如选项D。由于选项A中的椭圆和双曲线的焦点不重合,因此圆P的圆心轨迹不可能是选项A。6. 已知A与B是集合1,2,3,100的两个子集,满足:A与B的元素个数相同,且为AB空集。若nA时总有2n+2B,则集合AB的元素个数最多为( B )A. 62B. 66C. 68D. 74解:先证|AB|66,只须证|A|33,为此只须证若A是1,2,49的任一个34元子集,则必存在nA,使得2n+2B。证明如下:将1,2,49分成如下33个集合:1,4,3,8,5,12,23,48共12个;2,6,10,22,14,30,18,38共4个;25,27,29,49共13个;26,34,42,46共4个。由于A是1,2,49的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A,即存在nA,使得2n+2B。如取A=1,3,5,23,2,10,14,18,25,27,29,49,26,34,42,46,B=2n+2|nA,则A、B满足题设且|AB|66。二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A(3,0),B(1,1),C(0,3),D(1,3)及一个动点P,则|PA|+|PB|+|PC|+|PD|的最小值为 。解:如图,设AC与BD交于F点,则|PA|+|PC|AC|=|FA|+|FC|,|PB|+|PD|BD|=|FB|+|FD|,因此,当动点P与F点重合时,|PA|+|PB|+|PC|+|PD|取到最小值。8. 在ABC和AEF中,B是EF的中点,AB=EF=1,BC=6,若,则与的夹角的余弦值等于 。解:因为,所以,即。因为,所以,即。设与的夹角为,则有,即3cos=2,所以。9. 已知正方体ABCDA1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于 。解:如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A所在的三个面上,即面AA1B1B、面ABCD和面AA1D1D上;另一类在不过顶点A的三个面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上。在面AA1B1B上,交线为弧EF且在过球心A的大圆上,因为,AA1=1,则。同理,所以,故弧EF的长为,而这样的弧共有三条。在面BB1C1C上,交线为弧FG且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为B,半径为,所以弧FG的长为。这样的弧也有三条。于是,所得的曲线长为。10. 已知等差数列an的公差d不为0,等比数列bn的公比q是小于1的正有理数。若a1=d,b1=d2,且是正整数,则q等于 。解:因为,故由已知条件知道:1+q+q2为,其中m为正整数。令,则。由于q是小于1的正有理数,所以,即5m13且是某个有理数的平方,由此可知。11. 已知函数,则f(x)的最小值为 。解:实际上,设,则g(x)0,g(x)在上是增函数,在上是减函数,且y=g(x)的图像关于直线对称,则对任意,存在,使g(x2)=g(x1)。于是,而f(x)在上是减函数,所以,即f(x)在上的最小值是。12. 将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有 3960 种(用数字作答)。解:使2个a既不同行也不同列的填法有C42A42=72种,同样,使2个b既不同行也不同列的填法也有C42A42=72种,故由乘法原理,这样的填法共有722种,其中不符合要求的有两种情况:2个a所在的方格内都填有b的情况有72种;2个a所在的方格内仅有1个方格内填有b的情况有C161A92=1672种。所以,符合题设条件的填法共有722721672=3960种。三、解答题(本题满分60分,每小题20分)13. 设,求证:当正整数n2时,an+1an。证明:由于,因此,于是,对任意的正整数n2,有,即an+10(1),(2),(3),由此解得。对求导,得,则,于是直线l1的方程为,即,化简后得到直线l1的方程为(4)。同理可求得直线l2的方程为(5)。(4)(5)得,因为x1x2,故有(6)。将(2)(3)两式代入(6)式得xp=2。(4)+(5)得(7),其中,代入(7)式得2yp=(32k)xp+2,而xp=2,得yp=42k。又由得,即点P的轨迹为(2,2),(2,2.5)两点间的线段(不含端点)。15. 设函数f(x)对所有的实数x都满足f(x+2)=f(x),求证:存在4个函数fi(x)(i=1,2,3,4)满足:(1)对i=1,2,3,4,fi(x)是偶函数,且对任意的实数x,有fi(x+)=fi(x);(2)对任意的实数x,有f(x)=f1(x)+f2(x)cosx+f3(x)sinx+f4(x)sin2x。证明:记,则f(x)=g(x)+h(x),且g(x)是偶函数,h(x)是奇函数,对任意的xR,g(x+2)=g(x),h(x+2)=h(x)。令,其中k为任意整数。容易验证fi(x),i=1,2,3,4是偶函数,且对任意的xR,fi(x+)=fi(x),i=1,2,3,4。下证对任意的xR,有f1(x)+f2(x)cosx=g(x)。当时,显然成立;当时,因为,而,故对任意的xR,f1(x)+f2(x)cosx=g(x)。下证对任意的xR,有f3(x)sinx+f4(x)sin2x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论