




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲二次函数与幂函数,1二次函数(1)二次函数解析式的三种形式一般式:f(x)_顶点式:f(x)a(xm)2n(a0)零点式:f(x)a(xx1)(xx2)(a0)(2)二次函数的图象和性质,知识梳理,ax2bxc(a0),2.幂函数(1)幂函数的定义一般地,形如_的函数称为幂函数,其中x是自变量,为常数(2)常见的5种幂函数的图象,yx,(3)常见的5种幂函数的性质,0,),y|yR,且y0,诊断自测,答案B,答案B,答案B,考点一二次函数的图象及应用【例1】(1)设abc0,二次函数f(x)ax2bxc的图象可能是(),(2)已知函数f(x)x22(a2)xa2,g(x)x22(a2)xa28.设H1(x)maxf(x),g(x),H2(x)minf(x),g(x)(maxp,q表示p,q中的较大值,minp,q表示p,q中的较小值)记H1(x)的最小值为A,H2(x)的最大值为B,则AB()Aa22a16Ba22a16C16D16,(2)令f(x)g(x),即x22(a2)xa2x22(a2)xa28,即x22axa240,解得xa2或xa2.f(x)与g(x)的图象如图由图象及H1(x)的定义知H1(x)的最小值是f(a2),H2(x)的最大值为g(a2),ABf(a2)g(a2)(a2)22(a2)2a2(a2)22(a2)(a2)a2816.答案(1)D(2)C,规律方法(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手(2)而用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错,【训练1】(2014杭州模拟)如图是二次函数yax2bxc图象的一部分,图象过点A(3,0),对称轴为x1.给出下面四个结论:b24ac;2ab1;abc0;5ab.其中正确的是()ABCD,解析因为图象与x轴交于两点,所以b24ac0,即b24ac,正确;,结合图象,当x1时,y0,即abc0,错误;由对称轴为x1知,b2a.又函数图象开口向下,所以a0,所以5a2a,即5ab,正确答案B,考点二二次函数在给定区间上的最值问题【例2】已知f(x)ax22x(0x1),求f(x)的最小值解当a0时,f(x)2x在0,1上递减,f(x)minf(1)2.,规律方法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解,【训练2】若将例2中的函数改为f(x)x22ax,其他不变,应如何求解?解f(x)x22ax(xa)2a2,对称轴为xa.当a0时,f(x)在0,1上是增函数,f(x)minf(0)0.当0a1时,f(x)minf(a)a2.当a1时,f(x)在0,1上是减函数,f(x)minf(1)12a,,规律方法(1)幂函数解析式一定要设为yx(为常数)的形式(2)可以借助幂函数的图象理解函数的对称性、单调性(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键,答案(1)C(2)h(x)g(x)f(x),思想方法1二次函数、二次方程、二次不等式间相互转化的一般规律(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:开口方向;对称轴位置;判别式;端点函数值符号四个方面分析(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象和性质求解2幂函数yx(R)图象的特征0时,图象过原点和(1,1)点,在第一象限的部分“上升”;0时,图象不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立,易错防范1对于函数yax2bxc,要认为它是二次函数,就必须满足a0,当题目条件中未说明a0时,就要讨论a0和a0两种情况2幂函数的图象一定会出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第五单元 第6课时 解决原来有多少的实际问题(教学设计)一年级数学上册同步高效课堂系列(人教版·2024秋)
- 2025年医疗器械行业需求分析及创新策略研究报告
- (2025年标准)虎牙投资协议书
- (2025年标准)红股协议书
- (2025年标准)荷兰边界协议书
- (2025年标准)和对方和解协议书
- (2025年标准)合作共享协议书
- 2025年晾衣架行业需求分析及创新策略研究报告
- (2025年标准)合同质押协议书
- 2025年农资连锁行业投资趋势与盈利模式研究报告
- T-CITSA 57-2025 高速公路基础设施主数据标准
- 住院病人防止走失课件
- 2025年临床助理医师考试试题及答案
- 2025年南康面试题目及答案
- 定增基金管理办法
- 汽车标定工程师培训课件
- GB/T 45767-2025氮化硅陶瓷基片
- 2025年云南省初中学业水平考试物理及答案
- 《化工安全技术》教学设计(教学教案)
- 安全文明施工措施费清单五篇
- 医院总务设备科管理制度
评论
0/150
提交评论