




已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2标准正交基,3同构,4正交变换,1定义与基本性质,6对称矩阵的标准形,8酉空间介绍,7向量到子空间的距离最小二乘法,第九章欧几里得空间,5子空间,9.6实对称矩阵的标准形,一、实对称矩阵的一些性质,二、对称变换,三、实对称矩阵可正交相似于实对角矩阵,四、实二次型的主轴问题,一、实对称矩阵的一些性质,引理1设A是实对称矩阵,则A的特征值皆为实数,证:设是A的任意一个特征值,则有非零向量,满足,其中为的共轭复数,,又由A实对称,有,令,由于是非零复向量,必有,故,引理2设A是实对称矩阵,在n维欧氏空间上,定义一个线性变换如下:,则对任意有,或,证:取的一组标准正交基,,则在基下的矩阵为A,即,任取,即,于是,又是标准正交基,,二、对称变换,1、定义,则称为对称变换(symmetrictransformation),设为欧氏空间V中的线性变换,如果满足,2、基本性质,(1)n维欧氏空间V的对称变换与n级实对称矩阵在,标准正交基下是相互确定的:,1)实对称矩阵可确定一个对称变换,正交基,证:设,为V的一组标准,定义V的线性变换:,则即为V的对称变换,2)对称变换在标准正交基下的矩阵是实对称矩阵,为V的一组标准正交基,,证:设为n维欧氏空间V上的对称变换,,为在这组基下的矩阵,即,或,于是,即,所以A为对称矩阵,由是对称变换,有,(2)(引理3)对称变换的不变子空间的正交补也是,它的不变子空间,对,任取,即,证:设是对称变换,W为的不变子空间,由W是子空间,有,因此,故也为的不变子空间,1、(引理4)实对称矩阵属于不同特征值的特征向量,分别是属于的特征向量,则,三、实对称矩阵的正交相似对角化,是正交的,基下的矩阵,,证:设实对称矩阵A为上对称变换的在标准正交,是A的两个不同特征值,,又,即正交,有,即,由,(定理7)对总有正交矩阵T,使,、,证:设A为上对称变换在标准正交基下的矩阵,由实对称矩阵和对称变换互相确定的关系,只需证,有n个特征向量作成的标准正交基即可,n=1时,结论是显然的,对的维数n用归纳法,有一单位特征向量,其相应的特征值为,即,假设n1时结论成立,对设其上的对称变换,设子空间,显然W是子空间,,则也是子空间,且,又对有,所以是上的对称变换,由归纳假设知有n1个特征向量,构成的一组标准正交基,从而就是的一组标准正交基,,又都是的特征向量,即结论成立,3、实对称矩阵正交相似实对角矩阵步骤,设,(1)求出A的所有不同的特征值:,其重数必满足;,(2)对每个,解齐次线性方程组,求出它的一个基础解系:,它是A的属于特征值的特征子空间的一组基,正交基,把它们按正交化过程化成的一组标准,(3)因为互不相同,,且,所以,则T是正交矩阵,且,矩阵T的第1,2,n列,,使为对角形,就是V的一组,标准正交基,例1设,求一正交矩阵T使成对角形,解:先求A的特征值,A的特征值为(三重),其次求属于的特征向量,即求解方程组,得其基础解系,把它正交化,得,再单位化,得,这是特征值(三重)的三个单位正交特征向量,,也即是特征子空间的一组标准正交基,再求属于的特征向量,即解方程组,得其基础解,再单位化得,这样构成的一组标准正交基,它们,都是A的特征向量,正交矩阵,使得,注意,成立的正交矩阵不是唯一的,1.对于实对称矩阵A,使,而且对于正交矩阵T,还可进一步要求,证:如果由上述方法求得的正交矩阵T,取正交矩阵,则是正交矩阵且,同时有,2.如果不计较主对角线上元素的排列的次序,与,实对称矩阵A正交相似的对角矩阵是唯一确定的,3.因为正交相似的矩阵也是互相合同的,所以可,用实对称矩阵的特征值的性质刻画其正定性:,设为实对称矩阵A的所有特征值,(i)A为正定的,(ii)A为半正定的,(iii)A为负定(半负定)的,4.实对称矩阵A的正、负惯性指数分别为正、负特,特征值的个数(重根按重数计),n秩(A)是0为A的特征值的重数.,1、解析几何中主轴问题,将上有心二次曲线或上有心二次曲面通过坐标,的旋转化成标准形,这个变换的矩阵是正交矩阵.,四、实二次型的主轴问题,2、任意n元实二次型的正交线性替换化标准形,(1)正交线性替换,如果线性替换X=CY,的矩阵C是正交矩阵,则称之为正交线性替换.,(2)任一n元实二次型,都可以通过正交的线性替换变成平方和,其中平方项的系数为A的全部特征值,例2在直角坐标系下,二次曲面的一般方程是,则式可以写成,令,对中的有正交矩阵C(且),确定的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黏土相框设计课件
- 打造书香校园课件
- 2025版企业战略顾问聘请合同模板(未来发展)
- 2025版门卫岗位技能提升与职业发展合同
- 2025版酒店客房用品环保材料销售合同
- 2025版剧院消防系统安装及施工安全责任合同
- 2025版高端手机抵押消费贷款合同范本
- 二零二五年健身房健身教练职业发展规划咨询合同
- 旬阳县医院消防知识培训课件
- 早餐安全知识培训课件
- 2024年中级通信专业实务(终端与业务)考试题库(含答案)
- GB/T 4213-2024气动控制阀
- 2025年度杭州汽车租赁合同中的还车检验条款3篇
- 燃气执法培训课件
- 法制视角下自媒体意见表达与法律规制研究
- 水果联营合同范例
- 数字人民币培训
- 2024新版《药品管理法》培训课件
- DB37-T 1389-2024钢箱梁顶推施工技术规范
- GB/T 15568-2024通用型片状模塑料(SMC)
- 车辆采购服务投标方案(技术方案)
评论
0/150
提交评论