已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,1.2.7二次函数的图象和性质增减性和最值,学习目标1了解二次函数的定义2掌握二次函数的图象及增减性和最值知识链接1函数yx22x3的对称轴为,该函数的递增区间为,递减区间为2函数yx2的最小值为.,预习导学,x1,(1,),(,1),0,预习导学,上(下),要点一求二次函数的解析式例1已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试确定此二次函数解析式,课堂讲义,由得ba,则2ac1,即c2a1.代入整理得a24a,解得a4,或a0(舍去)b4,c7.因此所求二次函数解析式为y4x24x7.法二利用二次函数顶点式设f(x)a(xm)2n(a0)f(2)f(1),,课堂讲义,课堂讲义,课堂讲义,规律方法用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即f(x)ax2bxc(一般式)、f(x)a(xx1)(xx2)(两根式)、f(x)a(xm)2n(顶点式),课堂讲义,跟踪演练1已知f(x)为二次函数,且f(x1)f(x1)2x24x.求f(x)的解析式解设f(x)ax2bxc(a0)则f(x1)a(x1)2b(x1)cf(x1)a(x1)2b(x1)c又f(x1)f(x1)2x24x2ax22bx2a2c2x24x,课堂讲义,课堂讲义,要点二二次函数的增减性例2f(x)4x2mx5在区间2,)上是递增函数,求m的取值范围,课堂讲义,课堂讲义,跟踪演练2已知函数f(x)x22ax2,x5,5(1)当a1时,求函数f(x)的最大值和最小值;(2)求实数a的取值范围,使yf(x)在区间5,5上是单调函数解(1)当a1时,f(x)x22x2(x1)21,x5,5,15,5当x1时,f(x)min1;当x5时,f(x)max37.,课堂讲义,(2)f(x)(xa)22a2,其顶点横坐标为xa.f(x)在区间5,5上是单调函数,a5或a5.故a的取值范围是a5或a5.,课堂讲义,要点三求二次函数的值域或最值例3求函数yx22ax1在0,2上的值域解当a0时,yminf(0)1,ymaxf(2)44a134a,所以函数的值域为1,34a当0a1时,yminf(a)(a21),ymaxf(2)34a,所以函数的值域为(a21),34a,课堂讲义,当1a2时,yminf(a)(a21),ymaxf(0)1,所以函数的值域为(a21),1当a2时,yminf(2)34a,ymaxf(0)1,所以函数的值域为34a,1,课堂讲义,规律方法在求二次函数的最值时,要注意定义域是R还是区间m,n,若是区间m,n,最大(小)值不一定在顶点取得,而应该看顶点横坐标是在区间m,n内还是在区间的左边或右边在区间的某一边时应该利用函数的增减性求解,最值不在顶点上取得,而在区间的端点上取得,课堂讲义,跟踪演练3已知二次函数f(x)x22x2.(1)当x0,4时,求f(x)的最值;(2)当x2,3时,求f(x)的最值;(3)当xt,t1时,求f(x)的最小值g(t)解(1)f(x)x22x2(x1)21,其图象顶点横坐标为x1,开口向上,当x0,4时,f(x)maxf(4)4224210,f(x)minf(1)1.,课堂讲义,课堂讲义,1若f(x)(m1)x2(m1)x1是二次函数,则()Am为任意实数Bm1Cm1Dm1且m1答案B解析由m10,得m1,故选B.,当堂检测,答案D,当堂检测,3函数f(x)2x23|x|的单调递减区间是_4函数f(x)2x2mx3,当x(,1时是递减函数,则m的取值范围是_,当堂检测,二次函数在某区间上的最值(或值域)的求法要掌握熟练,特别是含参数的两类“定轴动区间、定区间动轴”,解法是:抓住“三点一轴”数形结合,三点指定的是区间两个端点和区间中点,一轴指的是对称轴具体做法是:首先要采用配方法,化为ya(xm)2n的形式,得顶点(m,n)其次对区间进行讨论,可分成三个类型:(1)顶点固定,区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川省林业和草原调查规划院考核招聘4人考试笔试模拟试题及答案解析
- 2025合肥市粮食集团有限公司公开招聘工作人员7人考试笔试参考题库附答案解析
- 2025年中国烟草总公司广东省公司笔试试题
- 榆林神木市公共服务辅助人员招聘考试真题2024
- 2025-2030中国医疗AI产品商业化路径与政策监管研究报告
- 2025金华武义交通旅游投资建设集团有限公司第二次人才引进5人笔试考试备考试题及答案解析
- 2026届吉林省长春市化学高三上期末教学质量检测模拟试题含解析
- 2025-2030中国跨境电商物流服务体系优化与创新发展路径研究报告
- 2025年新能源考试真题及答案
- 河南省兰考县三中2026届化学高一第一学期期末联考模拟试题含解析
- DB14∕T 3187-2024 公共场所视听网络安全保护要求
- 2025医用耗材管理相关知识理论考试试题及答案
- 中华人民共和国两用物项出口管制条例考试试卷试题及参考答案
- 架子鼓教学基础课件
- 绝缘检测仪操作技术课件
- 业务员区域管理制度
- 2025年江苏省选调生考试综合知识试题
- 科研项目经费使用情况自查报告
- 库尔勒汇同泰印染科技有限公司年产10000吨筒子纱染色、20000吨针织布、毛巾、干发巾飘然项目环评报告
- 2025年分布式光伏发电项目并网验收调试报告
- 学校校服验收管理制度
评论
0/150
提交评论