人教版高中数学《对数函数及其性质》全国一等奖教学设计_第1页
人教版高中数学《对数函数及其性质》全国一等奖教学设计_第2页
人教版高中数学《对数函数及其性质》全国一等奖教学设计_第3页
人教版高中数学《对数函数及其性质》全国一等奖教学设计_第4页
人教版高中数学《对数函数及其性质》全国一等奖教学设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2 对数函数及其性质教学设计 一、内容与内容解析一、内容与内容解析 对数函数是学生在高中阶段接触到的第二个基本初等函数,在基本初等函数 ()中起到了承上启下的作用。 本节课的主要任务是在学习对数的概念与运算性质之后,类比研究指数函数 的过程认识对数函数。这节课是第一课时内容, 主要介绍对数函数的图象和性质 以及性质的简单应用。 二、目标与目标解析二、目标与目标解析 本节课的教学目标是: 1、理解对数函数的概念,体会对数函数是一类重要的函数模型; 2、能画出具体的对数函数的图象,借助图形计算器探索对数函数的性质; 3、能利用对数函数的性质解决相关问题; 4、在学习过程中,渗透从特殊到一般、数形结合等数学思想,让学生体会 类比推理在获得数学结论上的作用。 为了更好地完成以上教学目标,我认为本节课的教学重点应围绕“对数函数 的图象及性质”进行,其中的教学难点是突破对“底数a对函数图象的影响”的 认识。 三、教学问题诊断分析三、教学问题诊断分析 通过前面的学习,学生已掌握了对数的概念及其运算性质,特别是对换底公 式可以熟练的应用。 在指数函数的学习过程中, 学生已初步掌握研究函数的思路 和方法。 鉴于之前对于教学内容、教学目标、教学重、难点的分析,本节课的教学活 动应以教师引导、学生主动探究为主,教学设计的主导思想应定位在“本节课为 学生在研究函数上的一次实践”上。 因此在教学设计上教师应当对于学生的探究 活动进行精心的组织, 使得学生明确任务, 有的放矢, 既能完成预定的教学目标, 又能让学生体会探究的乐趣。 让学生在掌握一些学习方法的同时培养和发展学生 的数学素养。 四、教学支持条件四、教学支持条件 本节课中, 师生使用的图形计算器是 CASIO fx-CG20。 本款图形计算器在完 成教学目标上起到了很大的作用,可以称之为 “教学利器” 。首先,学生利用它 基本的计算功能,完成了较复杂的对数计算,让自己感受到数字的真实存在;其 次,它强大的绘图功能,尤其是动态绘图的功能,为研究函数性质,突破教学难 点铺平了道路, 学生在计算器上所得到的直观感受比起教师的抽象讲解效果要好 很多;最后,我们不但能利用计算器检验解题结果,还为学生留下无限的遐想空 间,有助于激发学生的学习兴趣。 五、教学过程设计五、教学过程设计 (一)获得新知 通过前面指数函数的学习,我们初步形成了研究函数的思路和方法。在随后 的对数及其运算性质的学习中,我们又认识到了指、对数之间的紧密联系,今天 我们继续学习一个基本初等函数对数函数。 它到底是一个什么样的函数?它与指数函数又有什么关系呢?让我们一起 拭目以待! 【设计意图设计意图】简要回顾前面所学知识,为本节课的学习做好铺垫,最后以问 题串的形式激发学生对对数函数的学习兴趣。 问题问题 1 1:首先请看一个考古学上的数学问题:考古学家一般通过提取附着在 出土文物、古遗址上死亡生物体的残留物,利用t log 1 p估算出出土文物和 5730 2 古遗址的年代。 例如对于下表中所示的碳 14 的含量P,请同学们利用计算器计算出生物死 亡年数t的值(保留到整数)为: 碳 14 的含量P0.50.30.10.010.001 生物死亡年数t57309953190353806957104 通过计算请同学们分析:t是不是P的函数,为什么? 【设计意图设计意图】 通过实例引出对数函数的概念,让学生体会研究对数函数的实 际意义。学生通过计算,可以体会两个变量间的对应关系,从而联想到利用函数 的定义分析新的问题,使得函数概念建立之初就能用一个比较高的观点审视之。 预设的师生活动:从特殊的几组数值推广到一般,学生根据函数的定义可以 得出结论:对于每一个碳 14 含量P,都有唯一确定的年代t与它对应,所以t是 P的函数。而刚才的关系式t log 1 p就是函数的解析式。 5730 2 在此基础上,教师给出一般性的结论:这个函数解析式是一个对数式,底数 为一个常数,自变量在真数的位置上,生活中还有很多类似形式的函数,将他们 抽象为数学问题,就是我们今天要研究的对数函数: 一般地,我们把函数y log a x(a 0,且a 1)叫做对数函数,其中x是自变 量,函数的定义域是(0,)。 问题问题 2 2:类比指数函数的学习过程,你能制定一套研究对数函数的方案吗? 请先独立思考,之后小组讨论,确定你们的研究方案。 【设计意图设计意图】 培养学生规划研究方案的意识和能力,达到对函数概念以及指 数函数的巩固的目的,并为本节课的研究理清思路。 预设的师生活动:学生按照要求完成之后进行展示交流。具体方案如下: 研究的思路是:先作函数图象(哪个函数图象?y log a x?) ,然后根据图 象研究函数性质(包括定义域、值域、单调性、奇偶性、特殊点、图象的其他变 化特征等方面) 。 问题问题 3 3:想必大家已经清楚下一步的任务了,接下来请同学们借助图形计算 器,根据前面确定的方案在小组内研究,看看你能得到什么结论,并且思考能否 用一个恰当的形式记录下来。 【设计意图设计意图】 将研究函数的性质的主动权交给学生,培养学生的基于类比进 行自主学习的能力。 预设的师生活动:学生小组内进行讨论,教师巡查指导,最后请同学上台演 示计算器作图以及讨论成果: (下表在现场生成,依据学生的发现随时增删) y log a x0 a 1a 1 图象 定义域 值域 过定点 单调性 奇偶性 函数值的 分布 在(0,)上单调递减 非奇非偶 当0 x 1时,log a x 0 当x 1时,log a x 0 当0 x 1时,log a x 0 当x 1时,log a x 0 (0,) R (1,0) 在(0,)上单调递增 注: (1)函数值的分布:在对数函数中,当底数与真数在同一范围取值时, 对数为正,当底数与真数在不同范围取值时,对数为负; (如果学生未提及,可 以不作说明) (2)当两个对数函数的底数互为倒数时,这两个对数函数的图象关 于 x 轴对称(可在图形计算器中输入y log a x以及y log 1 x这两个对数函数, a 设定参数a变化时观察函数图象所呈现出的情况) 。 问题问题 4 4:对于函数y log a x以及y log 1 x的图象关于 x 轴对称,你可以解 a 释吗? 【设计意图设计意图】尝试用代数的形式分析直观现象,数形结合,培养学生思维的 严谨性。 预设的师生活动:图象的对称的本质是点的对称,利用换底公式可以解释。 在函数y log 1 x的图象上任取一点(x1,y1) ,则log 1 x 1 log a x 1 ,所以点(x1, aa -y1)在函数y log a x的图象上。又点(x1,y1)和点(x1,-y1)关于x轴对称, 所以这两个函数图象关于x轴对称。 (展板展示学生的演练过程) (二)初步应用 例 1 求下列函数的定义域: (1)y log 2 x2; (2)y log 3 (4 x)。 问题问题 5 5:上述两个函数是对数函数吗? 预设的师生活动:不是。但是由于真数位置上存在变量,利用换元的思想, 我们可将他们换作新变元t,因为t的取值范围是(0,),可得: 解: (1)因为x2 0,即x 0,所以函数的定义域是x| x 0。 第二问请学生自行完成: (2)因为4 x 0,即x 4,所以函数的定义域是x| x 4。 【设计意图设计意图】首先巩固学生对对数函数概念的认识,之后利用换元的方法, 将新问题转化为基本问题,体现代数问题求解的程序化思想。 问题问题 6 6:你想知道他们的函数图象吗? 师生活动: 利用图形计算器展示两个函数的图象。从图上可以验证结论的正 确,同时也可以通过观察图象了解这些函数的其他性质。 【设计意图设计意图】通过图形计算器的作图,验证了求解结果,同时也激发了学生 讨论上述函数其他性质的兴趣,相比较以前教师抽象的讲解要形象了很多。 例 2 比较下列各组数中两个值的大小: (1)log 2 3.4,log 2 8.5; (2)log 0.3 1.8,log 0.3 2.7; (3)log a 5.1,log a 5.9(a 0,且a 1); (4)log 3 2,log 4 2. 【设计意图设计意图】 类比指数函数中同类问题的解决办法,利用对数函数的单调性 解题。 (1)小题由教师板演, (2) (3)小题请学生仿照处理,培养学生类比的学 习能力,同时渗透分类讨论的思想; (4)小题则发挥图形计算器的作用,培养学 生直观想象素养。 预设的师生活动:本题是对函数单调性的应用,因此可以类比前面指数的同 类问题解决: 解: (1)因为函 数y log 2 x在(0,)上单调递增,且3.4 8.5,所以 log 2 3.4 log 2 8.5; (2) (3)由学生口述完成: (2)因为函 数y log0.3x在(0,)上单调递减 ,且1.8 2.7,所以 log 0. 3 1.8log ; 0. 3 2.7 (3)当a 1时,log a 5.1 log a 5.9; 当0 a 1时,log a 5.1 log a 5.9; (4)对于底数不同、真数相同的对数的比较,可以借助函数图象操作。 请学生先行思考, 之后进行展示。 教师可利用图形计算器在同一坐标系中作 出y log 3 x以及y log 4 x的图象以及直线x 2,观察直线与曲线的交点, 通过比较交点的纵坐标发现log 3 2 log 4 2。 (可能会有学生考虑到利用函数 y log x 2的单调性进行求解,这时教师应对学生的这种想法给予肯定,同 时明确指出:虽然函数y log x 2并不是我们所熟悉的函数,而且目前我们 也并不了解其函数性质,但是我们可以利用图形计算器画出其函数图象来, 借助图象进行求解。 ) (三)梳理总结 问题问题 7 7:通过这节课的学习你有哪些收获呢? 【设计意图设计意图】授之以鱼不如授之以渔,一堂课下来,学生们所能掌握到的思 路、方法及思想远比知识本身更重要。通过这一环节的设定,教师要将学生的学 习提升到方法论的层面上来,让学生在头脑中形成学习、研究的意识。 预设的师生活动:师生共同小结。从基本知识、信息技术的使用、研究思路 和方法、数学思想等方面进行。 (四)随堂检测、布置作业 对数函数及其性质课例点评对数函数及其性质课例点评 对数函数及其性质虽然是一堂较老的课例,但是通过本节课的展示,我们看到梁瑞 老师给我们呈现出了一些较新的元素。 整节课他教态自然大方, 教学语言简洁,板书规范明 了、重点突出,教学设计理念新,教学目标、重点与难点定位准确,展现出了其良好的数学 专业素养和扎实的教学功底, 尤其是在调动学生活动及教学资源运用等方面, 亮点颇多,主 要表现在以下几个方面: 1、 课堂引入,勇于尝试 本节课的引入教师大胆选用了很多老师所回避的课本上的考古学中的数学问题, 让学生 在实际问题中进行抽象得出对数函数的概念, 体会对数函数的实用价值, 引入的过程简明扼 要,但又不缺乏内容,不但复习了前面所学的知识, 而且将对数函数概念的形成提升到一个 宏观认识上; 2、 科学引导,大胆放手 由于之前指数函数学习的铺垫, 在本节课的教学过程中, 教师进行了大胆的尝试, 无论 是从研究函数的思路和方法上还是在对数函数的性质上, 教师把主动权完全交给了学生, 给 了学生充足的时间和空间,任由其发挥,而他只作为一名倾听者,适时的规范学生的表述、 纠正学生的错误,帮助学生提高语言组织能力和研究问题的能力; 3、 学生参与,可持续性 教师的授课非常注重学生的可持续性发展, 注重培养学生的学习能力, 教学内容、难度 收放自如,既能完成课前所设定的教学目标, 又为学有余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论