




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高 一 期 末 复 习立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线) (3)柱体、锥体、台体的体积公式 (4)球体的表面积和体积公式:V= ; S=4、空间点、直线、平面的位置关系(1)平面 平面的概念: A.描述性说明; B.平面是无限伸展的; 平面的表示:通常用希腊字母、表示,如平面(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC。 点与平面的关系:点A在平面内,记作;点不在平面内,记作点与直线的关系:点A的直线l上,记作:Al; 点A在直线l外,记作Al;直线与平面的关系:直线l在平面内,记作l;直线l不在平面内,记作l。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理1:(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理2及其推论作用:它是空间内确定平面的依据 它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面和相交,交线是a,记作a。符号语言:公理3的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系 异面直线定义:不同在任何一个平面内的两条直线 异面直线性质:既不平行,又不相交。(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系直线在平面内有无数个公共点三种位置关系的符号表示:a aA a(9)平面与平面之间的位置关系:平行没有公共点;相交有一条公共直线。b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。9、空间直角坐标系(1)定义:如图,是单位正方体.以A为原点,分别以OD,O,OB的方向为正方向,建立三条数轴。这时建立了一个空间直角坐标系Oxyz.1)O叫做坐标原点 2)x 轴,y轴,z轴叫做坐标轴. 3)过每两个坐标轴的平面叫做坐标面。(2)右手表示法: 令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。(3)任意点坐标表示:空间一点M的坐标可以用有序实数组来表示,有序实数组 叫做点M在此空间直角坐标系中的坐标,记作(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)(4)空间两点距离坐标公式:典型例题1、关于直线a、b、与平面M、N,下列命题中正确的是( )A若aM,bM,则ab B若aM,ba,则bM C若aM,bM,则a,b,则MD若aM,aN,则MN2、若是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是( )A若,则 B若,则 C若,则 D若,则3.设为两条直线,为两个平面,下列四个命题中,正确的命题是( )A若与所成的角相等,则B若,则C若,则D若,则4、和是两个不重合的平面,在下列条件中可以判定的是 ( )A、都垂直于平面 B内不共线的三点到的距离相等C、m是内的直线,且,m D、m是两条异面直线,且,m,m,6.已知直线平面,直线m平面,有下列四个命题:m m m m其中正确的两个命题是 ( )A与 B与 C与 D与5、三个互不重合的平面,能把空间分成n个部分,n所有可能的值是 ( )(A)4,6,7 (B)4,5,6,8 (C)4,7,8 (D)4,6,7,86.下列命题中,结论正确的个数是( ) (1)如果一个角的两边与另一个角的两边分别平行,那么这两个角相等(2)如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角或直角相等 (3)如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补 (4)如果两条直线同时平行于第三条直线,那么这两条直线平行 A. 1个 B. 2个 C. 3个 D.4个7.已知正四棱柱的底面积为4,过相对侧棱的截面面积为8,则该正四棱柱的体积为 .8.下面是关于四棱柱的四个命题:若有两个侧面垂直于底面,则该四棱柱为直四棱柱; 若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 若四个侧面两两全等,则该四棱柱为直四棱柱; 四棱柱的四条对角线两两全等,则该四棱柱为直四棱柱.其中真命题的编号是 _ 9.设A、B、C、D是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( ).ABCD10.如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,如果,则球的表面积是 A. B. C. D. 11一个几何体的三视图及其尺寸如右图所示(单位:cm),则该几何体的体积是 cm3. 12如图,一个空间几何体的正视图,左视图,俯视图为全等的等腰直角三角形,如果等腰直角三角形的直角边长为1,那么这个几何体的体积为 (第12题)(第11题)13.已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,该圆台的母线长_14.一个长方体的相交于一个顶点的三个面的面积分别是2、3、6,则长方体的体积是 .15.边长为a的正方体的内切球,外接球以及和各个棱都相切的球的体积比为 16.P是ABC所在平面外一点,且PA平面ABC,若O、Q分别是ABC和PBC的垂心,求证:平面PBC.17.如图,一个三棱柱形容器中盛有水,且侧棱= 8. 若水平放置时,液面恰好过的中点,则当底面ABC水平放置时,液面的高为多少?18已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形 (1)求该几何体的体积V; (2)求该几何体的侧面积S。19.如图所示,为正方形,平面,过且垂直于的平面分别交,于,求证:20.如图,已知矩形中,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上()求证:;()求证:平面平面;()求三棱锥的体积 21、如图,四棱锥的底面是正方形,底面,是上一点(1)求证:平面平面;(2)设,求点到平面的距离;22.如图是一个以为底面的直三棱柱被一平面所截得到的几何体,截面为ABC. 已知,设点O是AB的中点,(1)求证: 平面;(2)求该几何体的体积. 23.如下的三个图中,左边的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在右边画出(单位:cm)。(1)按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结,证明:面EFG。24、某几何体的三视图如右图所示(1)根据三视图,画出该几何体的直观图;(2)求该几何体的表面积;(3)在直观图中,设G是线段PB上的点,当G在线段PB上运动时,是否总有平面PBD平面AGC?证明你的结论。25、如图,在四棱锥中,平面平面,,是等边三角形,()设是上的一点,证明:平面平面;ABCMPD()求四棱锥的体积26、如图:AB为O的直径,O所在的平面为,PA于A,C为O上一点求证:平面PAC平面PBC。ABCDFE27.如图所示,正方形与直角梯形所在平面互相垂直,.()求证:平面;()求证:平面;()求四面体的体积.28.已知四棱锥的底面是菱形,为的中点()求证:平面;()求证:平面平面29.如图:梯形和正所在平面互相垂直,其中 ,且为中点. ( I ) 求证:平面;( II ) 求证:. 30.如图,在直三棱柱中,分别为,的中点,四边形是正方形()求证:平面;()求证:平面C1BACAAA1B12ABACAADAEAA1B12AC131.在长方形中,分别是,的中点(如左图).将此长方形沿对折,使平面平面(如右图),已知,分别是,的中点.()求证:平面;()求证:平面平面; ()求三棱锥的体积.32、已知直三棱柱的所有棱长都相等,且分别为的中点. (I) 求证:平面平面;(II)求证:平面. 33.如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.()求证:平面;()求证:平面平面;()求三棱锥的体积.ABABCCDMODO34、如图,在四棱锥中,底面是菱形,为的中点,为的中点()证明:平面平面; ()证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届北京市门头沟区市级名校高二化学第一学期期末学业水平测试模拟试题含答案
- 2026届宁夏银川市长庆高级中学高一化学第一学期期中预测试题含解析
- 2026届贵州省都匀市第一中学化学高二上期末监测模拟试题含答案
- 石嘴山市重点中学2026届化学高一上期末联考试题含解析
- 2026届四川省仁寿县二中、华兴中学高一化学第一学期期末联考试题含解析
- 北京市一七一中学2026届高一化学第一学期期中达标检测试题含解析
- 2026届黑龙江省齐齐哈尔市克东县克东一中、克山一中等五校联考高二化学第一学期期末联考试题含答案
- 安徽省阜阳市颍上第二中学2026届高二化学第一学期期末质量检测模拟试题含答案
- 甘肃省靖远第二中学2026届化学高一上期末学业水平测试试题含解析
- 2025年医卫类临床医学检验技术(正副高)综合能力-综合能力参考题库含答案解析(5套试卷)
- 2024年护理综合管理能力考试试题(附答案)
- 培训师必要知识课件
- 2025年事业单位卫生类专业知识试卷(卫生监督与卫生法规)试题
- 难治性精神分裂症中国专家共识(2025)解读
- 节假日值班人员安排管理制度
- 2024年化工行业典型生产安全事故警示
- (正式版)DB44∕T 2683-2025 《老年肌少症中西医结合健康管理规范》
- 2025年农电招聘面试题目及答案
- 领导小组管理办法
- 01 华为采购管理架构(20P)
- 基孔肯雅热的个案护理
评论
0/150
提交评论