MEMS技术 第四讲 机械零件原理(1).ppt_第1页
MEMS技术 第四讲 机械零件原理(1).ppt_第2页
MEMS技术 第四讲 机械零件原理(1).ppt_第3页
MEMS技术 第四讲 机械零件原理(1).ppt_第4页
MEMS技术 第四讲 机械零件原理(1).ppt_第5页
免费预览已结束,剩余166页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MEMS和微系统设计,课程内容,MEMS概述及MEMS设计的概述工艺简要回顾系统设计、工艺设计及版图设计主要的机械、电子元件及其设计基础多域耦合设计:以机电耦合为例子器件性能的估计简单的其他域的元件及其简要设计要点设计实例,第4讲主要内容,1、弹簧设计原理及计算例子2、薄膜设计原理及计算例子3、电容设计原理及计算例子4、电阻设计原理及计算例子5、压电模型,弹簧设计原理及计算例子,1、基本知识2、梁的静态分析3、二阶系统4、梁的动态分析与谐振,YieldStrength(cont.),Below:typicalstressvs.straincurvesforbrittle(e.g.,Si)andductile(e.g.steel)materials,YoungsModulusandUsefulStrength,Storedmechanicalenergy,弹簧的定义,F=KX,ACantileverBeam,预备知识,Whathappen?,DefineStrainisfoundtobeproportionaltostress(for“small”stressesat“lower”temperatures):,possionsRatio,V=PossionsRatio,Possionstrainsfromoffx-axisstress,Forces|tosurfacesSheerStress,Note:compensatingforcesareappliedtotheverticalfacestoavoidanettorque!,=sheerstress,G=sheermodulus,YoungsModulusin(001)Plane,VolumeChangeforaUniaxialStress,Stressesactingonadifferentialvolumeelement,TheresultingchangeinvolumeV,IsotropicElasticityin3D,Isotropic=sameinalldirectionsThecompletestress-strainrelationsforanisotropicelasticsolidin3D:(i.e.,ageneralizedHookesLaw),Basically,addinoff-axisstrainsfromNormalstressesinotherdirections,ImportantCase:planestress,Commoncase:verythinfilmcoatingathin,relativelyrigidsubstrate(e.g.,asiliconwafer),Atregionsmorethan3thicknessesfromedges,thetopsurfaceisstress-freeGettwocomponentsofin-planestress:,ImportantCase:planestress(cont.),Symmetryinthexy-planeThus,thein-planestraincomponentsare:where,where,LinearThermalExpansion,Astemperatureincreases,mostsolidsexpandinvolumeDefinition:linearthermalexpansioncoefficient,Linearthermalexpansioncoefficient,Remarks:valuestendtobeinthe10-6to10-7rangeCancapturethe10-6byusingdimensionsofstrian/k,where10-6K-1=1strian/kIn3D,getvolumethermalexpansioncoefficientFormoderatetemperatureexcursions,canbetreatedasaconstantofthematerial,butinactuality,itisafunctionoftemperature,TAsaFunctionofTemperature,Madou,FundamentalsofMicrofabrication,CRCpress,1998,Thin-FilmThermalStress,Assumefilmisdepositedstress-freeatatemperatureTr,thenthewholethingiscooledtoroomtemperatureTrSubstratemuchthickerthanthinfilmsubstratedictatestheamountofcontractionforbothitandthethinfilm,StressMeasurementViaWaferCurvature,CompressivelystressedfilmbendsawaferintoaconvexshapeTensilestressedfilmbendsawaferintoaconcaveshapeCanopticallymeasurethedeflectionofthewaferbeforeandafterthefilmisdepositedDeterminetheradiusofcurvatureR,thenapply:,LinearThermalExpansion,Butthefilmisattachedtothesubstrate,sotheactualstainisthefilmisthesameasthatinthesubstrate:,弹簧设计原理及计算例子,1、基本知识2、梁的静态分析3、二阶系统4、梁的动态分析与谐振,ReactionForcesandMoments,SignConventionsforMoments&ShearForces,(+)momentleadstodeformationwitha(+)radiusofcurvature(i.e.,upwards),(-)momentleadstodeformationwitha(-)radiusofcurvature(i.e.,downwards),(+)shearforcesproduceclockwiserotation,(-)shearforcesproducecounter-clockwiserotation,BeamSegmentinPureBending,Smallsectionofabeambentinresponsetoatranverseload,Considerasegmentboundedbythedashedlinesdefinedbyd:Atz=0:(i.e.,oftheneutralaxis):segmentlength=dx=Rd(1)Atanyz:segmentlength=dL=(R-z)d(2)Combining(1)&(2):,BeamSegmentinPureBending(cont.),Whyaminussign?SeeSenturia,pp.208-210,Radiusofcurvaturegeometricconnectiontostrain,resultfrombasiccalculus,Combiningthecurvatureandmomentresults:,and,剪切力忽略的条件,Complianceissumofbendingandshear-stresscontributions:,Solvingfor:,Transversaldeflectionofabeamwithaloadattheend,with:,(187,1),(187,2),I:=AreamomentofinertiaofthebeamB:=StrainatthesurfaceofthebeamF:=ForceactingattheendofthebeamdB:=Thicknessofbeamw:=DeflectionofbeambB:=WidthofbeamLB:=LengthofbeamEB:=Youngsmodulusofbeam,187,*W.Beitz,K.-H.Grote,Dubbel,TaschenbuchfrdenMaschinenbau”,*,(187,4),(187,5),Ariamomentumofinertia,(188,1),(188,2),Rectangular:,(188,3),I:=AreamomentofinertiaofthebeamEB:=YoungsmodulusofthebeamFB:=Elasticforceofthebeamatitsendw:=DeflectionofthebeamdB,bB,LB,RB:=Thickness,width,length,andradiusofthebeam,respectively,188,Moreariamomentumsofinertiaarefoundinbookslike:W.Beitz,K.-H.Grote,Dubbel,TaschenbuchfrdenMaschinenbau”orR.D.Blevins,FormulasforNaturalFrequencyandModeShape“,Krieger,Malaba,FL(1987),bB,dB,(187,3),Circular:,RB,Trapezoidshaped:,dB,e,bB,1,bB,2,(188,4),with:,(188,5),Strainonthesurfaceofabeamloadedatitsend,(189,1),Rectangularbeam:,(187,3):,(189,2),189,*W.Beitz,K.-H.Grote,Dubbel,TaschenbuchfrdenMaschinenbau”,*,I:=AreamomentofinertiaofthebeamEB:=YoungsmodulusofthebeamF:=ForceactingattheendofthebeamB:=Strainatthesurfaceofthebeamw:=DeflectionofthebeamdB,bB,LB:Thickness,width,andlengthofthebeam,respectively,Rectangularbeamclampedononesideandloadedattheotherend,xm,wm,(187,1),(187,3):,LB=800mbB=40mdB=20mEB=140GPaF=1mN,190,EB:=YoungsmodulusofthebeamB:=StrainatthesurfaceofthebeamF:=ForceactingattheendofthebeamdB,bB,LB,w:=Thickness,width,length,anddeflectionofthebeam,respectively,Transversaldeflectionofabeamloadedattheend,Thestrainatthesurfaceofabeamclampedatoneendandloadedattheotherendintransversaldirectionislargestatthefixedend.,Strainanddeflectionarenotafunctionsofaninitialstressofthebeam.,Rectangularbeam:,(189,2):,Strainanddeflectionareproportionaltotheforce(linearcharacteristiccurve).,(187,1),(187,3):,191,EB:=YoungsmodulusofthebeamB:=StrainatthesurfaceofthebeamF:=ForceactingattheendofthebeamdB,bB,LB,w:=Thickness,width,length,anddeflectionofthebeam,respectively,Transversaldeflectionofabeamloadedattheend,Rectangularbeam:,Becauseofthetransversestrainthebeamgetsnarroweronthesidewithtensilestressandwiderontheoppositeside.(Withtheexceptionoftheregionnexttotheclamping),Cross-sectionofthebeam:,Withoutload,Withload,bB,bB(1BB),dB,192,(189,2):,EB:=YoungsmodulusofthebeamB:=PoissonsratioofthebeamB:=StrainatthesurfaceofthebeamF:=ForceactingattheendofthebeamdB,bB,LB,w:Thickness,width,length,anddeflectionofthebeam,respectively,Deflectionofbeamsloadedbytheirweight,InthemicroworldtheGoldenGateBridgecouldbeconstructedasasimplebeam.,198,Deflectionofbeamsloadedbytheirweight,199,InthemicroworldtheGoldenGateBridgecouldbeconstructedasasimplebeam.,x,z,F,(208,1),(208,4),208,*,*W.Beitz,K.-H.Grote,Dubbel,TaschenbuchfrdenMaschinenbau”,B(z,x):=Strainofbeamw:=DeflectionofbeamF:=ForceactingattheendofthebeamB,max:=MaximumstrainofbeamEB:=YoungsmodulusofthebeamI:=AreamomentumofinertiaofthebeamLB,dB,bB:=Length,thickness,andwidthofbeam,respectively,(208,2):,209,(208,3):,xm,w0m,B(z,x):=Strainofbeamw:=DeflectionofbeamF:=ForceactingattheendofthebeamB,max:=MaximumstrainofbeamEB:=YoungsmodulusofthebeamI:=AreamomentumofinertiaofthebeamLB,dB,bB:=Length,thickness,andwidthofbeam,respectively,n,D:=Strainofneutralfiberandstressgeneratedbyit,respectivelyI:=Areamomentumofinertiaofthebeamw:=Deflectionofthebeamw0:=DeflectioninthecenterofthebeamF:=ForceactingatthecenterofbeamdB,bB,LB:=Thickness,width,andlengthofthebeamEB:=Youngsmodulusofthebeam,(208,2):,(212,1),Theelasticstrainnofthebeamalongtheneutralfiberneedstobetakenintoaccountalso.Itiscalculatedfromtheextensioninlength.InAnalogyto(90,2)itisassumed:,(212,2),212,90,Effectofthestress,Analogoustotheapproachusedforthemembranes,theequilibriumofforcesattheendsofthebeamiscalculated:,x,z,F,w0,FR,z,FR,(213,1),Anangularbendinglineisusedasanapproximation:,213,90,0,D:=Stress,initialstress,andstressduetostraining,respectivelyI:=Areamomentumofinertiaofthebeamw:=Deflectionofthebeamw0:=DeflectioninthecenterofthebeamF:=ForceactingatthecenterofbeamdB,bB,LB:=Thickness,width,andlengthofthebeamEB:=Youngsmodulusofthebeam,Asanapproximationtheforcesgeneratedbybendingmomentsandstressaresimplyadded:,(214,1),(212,1)+(213,2):,Addingtheforcesisaroughapproximationwhichshallshowtheinterrelationships.MoreexactresultsareobtainedbyFE-calculations.,214,0:=Stressandinitialstress,respectivelyEB:=Youngsmodulusofthebeamw:=Deflectionofthebeamw0:=DeflectioninthecenterofthebeamdB,bB,LB:=Thickness,width,andlengthofthebeamF:=Force,212,(214,1):,LB=800mdB=5mBB=50mEB=70GPa,0=-400MPa,0=+400MPa,w0m,FmN,215,0:=Stressandinitialstress,respectivelyEB:=Youngsmodulusofthebeamw:=Deflectionofthebeamw0:=DeflectioninthecenterofthebeamdB,bB,LB:=Thickness,width,andlengthofthebeamF:=Force,Deflectionofarectangularbeamclampedatbothsides,(214,1):,Ifnoforceisactingonthebeam(F=0),therearethreesolutionsforw0:,w0m,FmN,(216,2),216,k,0:=Criticalstressandinitialstress,respectivelyEB:=Youngsmodulusofthebeamw:=Deflectionofthebeamw0:=DeflectioninthecenterofthebeamdB,bB,LB:=Thickness,width,andlengthofthebeamF:=Forceactingatthecenterofbeam,Deflectionofarectangularbeamclampedatbothsidesasafunctionoftheinitialstress,Ifnoforceisactingonthebeam(F=0),therearethreesolutionsforw0:,w0=0,0k,w0m,(216,1):,(216,2):,(214,1):,217,(216,3):,with:,k,0:=Criticalstressandinitialstress,respectivelyEB:=Youngsmodulusofthebeamw0:=DeflectioninthecenterofthebeamF:=ForceactingatthecenterofbeamdB,bB,LB:=Thickness,width,andlengthofthebeam,Snappingoverofarectangularbeamclampedatbothsides,(218,1),(218,2),wU,wU,218,(216,2):,(214,1):,k,0:=Bucklingstressandinitialstress,respectivelyEB:=YoungsmodulusofthebeamwU:=Deflectionofthebeamatsnappingoverw0:=DeflectioninthecenterofthebeamdB,bB,LB:=Thickness,width,andlengthofthebeamF:=Forceactingatthecenterofbeam,217,Snappingoverofarectangularbeamclampedatbothsides,(218,2):,219,k,0:=Bucklingstressandinitialstress,respectivelyEB:=YoungsmodulusofthebeamwU:=Deflectionofthebeamatsnappingoverw0:=DeflectioninthecenterofthebeamdB,bB,LB:=Thickness,width,andlengthofthebeamF,FU:=Forceandsnappingforce,resp.,Bucklingstress,(216,3):,Theapproximation(216,3)is20%largerthantheexactresult(220,1).,220,207,k,0,EB:=Bucklingstress,initialstress,andYoungsmodulus,respectivelyI:=AreamomentumofinertiaofthebeamF,Fk:=Forceandbucklingload,respectivelyw0:=DeflectioninthecenterofthebeamdB,bB,LB:=Thickness,width,andlengthofthebeam,0,k,GB,EM,EB,M,B:=Initialstress,criticalstress,shearmodulus,Youngsmodulus,andPoissonsratio,respectivelyF,Mt:=ForceandTorquew0,:=DeflectionandangleofrotationdM,dB,LB,bB,RM:=Thickness,length,widthandradiuswU:=Deflectionatsnappingover,Calculationsofdeflectionandforceofcircularmembranesandrectangularbeams,229,ForceF,k,Membrane,TorqueMt,0,3,Beam,*Theeffectofinitialstressisnottakenintoaccount,*,Integrationofbeams,Compliancesadd,弹簧设计原理及计算例子,1、基本知识2、梁的静态分析3、二阶系统4、梁的动态分析与谐振,Infrequencydomain,Dampingcoefficient,transitionfunction,信号与系统的相关知识,为什么要做傅立叶变换:周期函数与非周期函数的傅立叶变换拉普拉斯变换传递函数常用的反变换,频率响应,设阻尼器的阻尼系数为c,则运动方程为,(4-19),上式中质量块的瞬时位置X(t)有三种情况,取决于阻尼比=c/2m的大小,图4-7,情况1,过阻尼情况,图-9描述了系统的过阻尼情况,质量块的瞬时位置X(t)为:,(4-20a),一、典型二阶系统的瞬态响应下图所示为稳定的二阶系统的典型结构图。,开环传递函数为:,闭环传递函数为:,这是最常见的一种系统,很多高阶系统也可简化为二阶系统。,称为典型二阶系统的传递函数,称为阻尼系数,称为无阻尼振荡圆频率或自然频率。,特征根为:,注意:当不同时,(极点)有不同的形式,其阶跃响应的形式也不同。它的阶跃响应有振荡和非振荡两种情况。,特征方程为:,当时,特征方程有一对共轭的虚根,称为零(无)阻尼系统,系统的阶跃响应为持续的等幅振荡。,当时,特征方程有一对实部为负的共轭复根,称为欠阻尼系统,系统的阶跃响应为衰减的振荡过程。,当时,特征方程有一对相等的实根,称为临界阻尼系统,系统的阶跃响应为非振荡过程。,当时,特征方程有一对不等的实根,称为过阻尼系统,系统的阶跃响应为非振荡过程。,当输入为单位阶跃函数时,有:,分析:,此时输出将以频率做等幅振荡,所以,称为无阻尼振荡圆频率。,阶跃响应为:,极点的负实部决定了指数衰减的快慢,虚部是振荡频率。称为阻尼振荡圆频率。,阶跃响应函数为:,即特征方程为,特征方程还可为,因此过阻尼二阶系统可以看作两个时间常数不同的惯性环节的串联,其单位阶跃响应为,式中,上述四种情况分别称为二阶无阻尼、欠阻尼、临界阻尼和过阻尼系统。其阻尼系数、特征根、极点分布和单位阶跃响应如下表所示:,可以看出:随着的增加,c(t)将从无衰减的周期运动变为有衰减的正弦运动,当时c(t)呈现单调上升运动(无振荡)。可见反映实际系统的阻尼情况,故称为阻尼系数。,二、典型二阶系统的性能指标及其与系统参数的关系,(一)衰减振荡瞬态过程:,上升时间:根据定义,当时,。,解得:,从上图中,我们可以得出在这种情况下,质量块的振动幅值迅速下降过阻尼适应在易于过量振动的机械和器件(包括微系统)在这种微器件的设计中,设计工程师应该选择一个合适的阻尼器,情况,临界阻尼情况,图-10描述了系统的临界阻尼情况,质量块的瞬时位置X(t)为:,(4-20b),情况,欠阻尼情况,图-11描述了系统的欠阻尼情况,质量块的瞬时位置X(t)为:,(4-20a),Damping,SixkindsofdampingAirdamping,EnergyDissipationandResonatorQ,ThermoelasticDamping(TED),Occurswhenheatmovesfromcompressedpartstotensionedpartsheatflux=energyloss,TEDCharacteristicFrequency,GovernedbyResonatordimensionsMaterialpropertiesTable1.materialproperties,QVs.Temperature,MechanismforQincreasewithdecreasingtemperaturethoughttobelinkedtolesshystereticmotionofmaterialdefectslessenergylosspercycle,EvenaluminumachievesexceptionalQsatcryogenictemperatures,DiskResonatorLossMechanisms,airDamping,Manysources:ignoreinternaldampingandacousticradiationfromtheanchorsfocusondragfromthesurroundinggas,GapdimensioncanbeOntheorderofmean-freePathcontinuummodeldoesntapply,Squeeze-FilmDamping,Platesslideinydirection,CouetteDamping,Dragforce=Dampingcoefficient:bEffectiveviscosityatreducedpressure(p50Torr):,Unfixedunits,例题4-12,如图4.25所示,针对空气和硅油做为阻尼流体,估算力平衡微加速度计的阻尼系数。假定微加速度计工作在20,图4-25力平衡微加速度计的阻尼,解:由上图知:梁的质量块宽度,b=510-6m梁的长度,L70010-6m间隙宽度,H=1010-6m从表4.3知:在20时粘度是air18.7510-6Ns/m2si74010-6Ns/m2,Howabouttheresultinasqueezedampingsituation?,OtherParameterin2-ordersystem,ResonantFrequencyQualityfactor,PhysicsmeaningoffandQ,Energymustbeconserved:PotentialEnergy+kineticEnergy=TotalEnergyMustbetrueateverypointonthemechanicalstructure,Solving,weobtainforresonancefrequency:,Example:ADXL-50,TheproofmassoftheADXL-50ismanytimeslargerthantheeffectivemassofitssuspensionbeamsCanignorethemassofthesuspensionbeams(whichgreatlysimplifiestheanalysis)SuspensionBeam:L=260m,h=2.3m,W=2m,Lumpedspring-massapproximation,Massisdominatedbytheproofmass60%ofmassfromsensefingersMass=M=162ng(nano-grams)Suspension:fourtensionedbeamsIncludebothbendingandstretchingtermsA.P.Pisano,BSACInertialSensorShortCourses,1995-1998,ADXL-50Suspensionmodel,Bendingcontribution:Stretchingcontribution:Totalspringconstant:addbendingtostretching,ADXL-50ResonanceFrequency,Usingalumpedmass-springapproximation:OntheADXL-50DataSheet:f0=24kHzWhythe10%difference?Well,itsapproximateplusAboveanalysisdoesnotincludethefrequency-pullingeffectoftheDCbiasvoltageacrosstheplatesensefingersandstationarysensefingerssomethingwellcoverlateron,TounderstandQfromdifferentdomain,Q=2.E/E=m.W0/b=(.W0)/(W1/2.ln2)(参看参考资料中的谐振部分),QualityFactor(orQ),MeasureofthefrequencyselectivityofatunedcircuitDefinition:,Example:seriesLCRcircuit,Example:parallelLCRcircuit,SelectiveLow-LossFilters:NeedQ,Inresonator-basedfilters:hightankQlowinsertionlossAtright:a0.1%bandwidth,3-resfilter1GHz(simulated)HeavyinsertionlossforresonatorQ1000Example:quartzcrystalresonators(e.g.,inwristwatches)ExtremelyhighQs10000orhigher(Q106possible)mechanicallyvibratesatadistinctfrequencyinathickness-shearmode,弹簧设计原理及计算例子,1、基本知识2、梁的静态分析3、二阶系统4、梁的动态分析与谐振,Vibrationsofbeams,Theresonancefrequencyofasensormaybetheparametertobemeasured.,Thenitneedstobeknown,howtheresonancefrequencyisaffectedbyotherparameters.,Besidesthis,thedistancetootherresonancefrequenciesneedstobeaslargeaspossibletoobtainalargemeasurementrange.,233,Usefulfrequencyrange,f1,Excitingfrequencyf,Amplitudeofthebeam,f2,f3,234,Actuatorsandsensorsusedattheirresonancefrequency,Ifactuatorsandsensorsaredrivenattheirresonance,itsfrequencyneedstobeknownandhowitisinfluenced,because:,235,Wavefunctionofvibratingbeams,LB:=Lengthofthebeami:=Phaseangleofmodeifi:=Resonancefrequencyofmodeiw(x,t):=Wavefunctionui:=PositiondependentpartofawavefunctionofthemodeiAi:=Amplitudeofmodei,LB,w(x),(236,1),(236,2),Thewavefunctionswi(x,t)ofthemodesaresolutionsofadifferentialequation.,236,Resonancesofvibratingbeams,LB:=Lengthofthebeamfi:=ResonancefrequencyofmodeiB:=DensityofbeamAB:=Cross-sectionalareaofthebeamI:=AreamomentumofinertiaofthebeamEB:=Youngsmodulusofthebeami:=Frequencyparameter,(237,1),Theresonancefrequenciesfi(i)ofthemodesareafunctionoftheboundaryconditions(thebearing)ofthebeam.,Inthefollowingtheresonancefrequenciesandwavefunctionsofbeamswillbeintroducedwhichareoftenusedinmicrotechnique.,237,Frequencyparameters,LB:=Lengthofthebeami,i:=Frequencyparameterw(x,t):=Deflectionofthebeam,(239,1),Thefrequencyparametersiandiresultfromtheboundaryconditionthatthe2ndderivativeofthewavefunctionattheendofthebeam(thecurvatureofthebeam)needstobezero.,iisthesolutionoftheequation:,(239,2),iisdefinedby:,239,Resonancefrequenciesofbeamsclampedatoneside,with:,(237,1):,(238,1),LB,w(x),(236,2):,238,LB:=Lengthofthebeamfi:=ResonancefrequencyofmodeiB:=DensityofbeamAB:=Cross-sectionalareaofthebeamI:=AreamomentumofinertiaofthebeamEB:=Youngsmodulusofthebeami,i:=Frequencyparametersw(x,t):=Wavefunctioni:=Phaseangleofmodeiui:=Positiondependentpartofawavefunctionofthemodei,(247,1),(247,2),EB:=YoungsmodulusofthebeamLB:=LengthofthebeamB:=DensityofthebeamI:=Areamomentumofinertiaofthebeamf1:=FundamentalfrequencyofthebeamAi:=Amplitudeofmodeim0:=MassatendofthebeammB:=Masseofthebeam,LB,w(x),(236,2):,247,Bendingvibrationsofabeamclampedatbothsides,with:,(236,2):,(237,1):,Buttheboundaryconditionsaredifferent.,Therefore,theresonancefrequenciesaredifferent:,249,EB:=YoungsmodulusofthebeamLB:=LengthofthebeamB:=DensityofthebeamI:=Areamomentumofinertiaofthebeamfi:=ResonancefrequencyofmodeiAB:=Cross-sectionalareaofbeami:=Phaseangleofmodeii,i:=Frequencyparameters,Excitationofacertainmode,Ifacertainmodeshallbeexcited,itsantinodesneedtobeexcitedwiththecorrespondingfrequency.,Example:The2ndmodeisexcitedelectrostatically.,255,U,Excitationofacertainmode,Example:The2ndmodeisexcitedthermo-mechanically.,256,Resonancefrequenciesofcircularmembranesandrectangularbeams,268,Frequencyf,k,Membrane,Beam,fi:=ResonancefrequencyofmodeiL,b,d:=Length,width,thicknessi:=FrequencyparameterE,:=YoungsmodulusandPoissonsratioI,It:=AreamomentumofinertiaandtorsionalconstantR:=Radius0,k:=InitialandcriticalstressmB,m0,:=Massofbeam,massfixedtobeamanddensity,Beam,Beam,Beam,Distributedsecondordersystemmodeling,TheRaleigh-RitzMethod,Equatethemaximumpotentialandmaximumkineticenergies:Rearrangingyieldsforresonancefrequency:,Example:folded-BeamResonator,Deriveanexpressionfortheresonancefrequencyofthefolded-beamstructureatleft.,UseRayleigh-RitzmethodKineticEnergy:Mustintegratesincethebeamvelocityisafunctionoflocationy!,GetkineticEnergies,Folded-BeamSuspension,GetkineticEnergies,GetkineticEnergies,EquivalentDynamicMass,Forthefolded-beamstructure,wevealreadydeterminedthemaximumkineticenergyAndinourresonancefrequencyanalysis,wevealreadydeterminedexpressionsforvelocity,EquivalentDynamicStoffmess&Damping,Stiffnessthenfollowsdirectlyfromknoledgeofmassandresonancefrequency,AnddampingalsofollowsreadilyfromknowledgeofQorotherlossmeasurands,Withmass,stiffness,anddamping

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论