




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,求出极大值和极小值.,复习求函数f(x)的极值的步骤:,(1)求导数f(x);,(2)求方程f(x)=0的根,(x为极值点.),bqr6401,练习:求函数的极值,x=-2时,y有极大值-8,当x=2时,y有极小值8,bqr6401,练习:如果函数f(x)=ax5-bx3+c(a0)在x=1时有极值,极大值为4,极小值为0,试求a,b,c的值.,bqr6401,练习:如果函数f(x)=ax5-bx3+c(a0)在x=1时有极值,极大值为4,极小值为0,试求a,b,c的值.,0,+,极大,无极值,bqr6401,练习:如果函数f(x)=ax5-bx3+c(a0)在x=1时有极值,极大值为4,极小值为0,试求a,b,c的值.,bqr6401,练习3:,0,+,极大,bqr6401,0,+,极大,bqr6401,1.已知函数f(x)=x-3ax+2bx在点x=1处有极小值-1,试确定a,b的值,并求出f(x)的单调区间。,作业:,2.三次函数f(x)=x3+ax2+x在区间-1,1上有极大值和极小值,求常数a的取值范围.,3.3.3最大值与最小值,bqr6401,一.最值的概念(最大值与最小值),新课讲授,如果在函数定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数f(x)在定义域上的最大值.,最值是相对函数定义域整体而言的.,bqr6401,1.在定义域内,最值唯一;极值不唯一;,注意:,2.最大值一定比最小值大.,bqr6401,观察下面函数y=f(x)在区间a,b上的图象,回答:,(1)在哪一点处函数y=f(x)有极大值和极小值?,(2)函数y=f(x)在a,b上有最大值和最小值吗?如果有,最大值和最小值分别是什么?,x1,x2,x3,x4,x5,极大:,x=x1,x=x2,x=x3,x=x5,极小:,x=x4,bqr6401,观察下面函数y=f(x)在区间a,b上的图象,回答:,(1)在哪一点处函数y=f(x)有极大值和极小值?,(2)函数y=f(x)在a,b上有最大值和最小值吗?如果有,最大值和最小值分别是什么?,极大:,x=x1,x=x2,x=x3,极小:,a,b,x,y,x1,O,x2,x3,bqr6401,二.如何求函数的最值?,(1)利用函数的单调性;,(2)利用函数的图象;,(3)利用函数的导数;,如:求y=2x+1在区间1,3上的最值.,如:求y=(x2)2+3在区间1,3上的最值.,bqr6401,求函数y=f(x)在a,b上的最大值与最小值的步骤如下:,(1)求函数y=f(x)在(a,b)内的极值;,(2)将函数y=f(x)的各极值点与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.,bqr6401,例1、求函数f(x)=x2-4x+6在区间1,5内的最大值和最小值,解:f(x)=2x-4,令f(x)=0,即2x4=0,,得x=2,-,+,3,11,2,故函数f(x)在区间1,5内的最大值为11,最小值为2,bqr6401,若函数f(x)在所给的区间I内有唯一的极值,则它是函数的最值,bqr6401,例2求函数在0,3上的最大值与最小值.,解:,令,解得x=2.,所以当x=2时,函数f(x)有极小值,又由于,所以,函数,在0,3上的最大值是4,最小值是,当0x0,bqr6401,函数,在1,1上的最小值为()A.0B.2C.1D.13/12,A,练习,bqr6401,2、函数(),A.有最大值2,无最小值B.无最大值,有最小值-2C.最大值为2,最小值-2D.无最值,3、函数,A.是增函数B.是减函数C.有最大值D.最小值,C,bqr6401,例3、,解:,bqr6401,已知三次函数f(x)=ax-6ax+b.问是否存在实数a,b,使f(x)在-1,2上取得最大值3,最小值-29,若存在,求出a,b的值;若不存在,请说明理由。,bqr6401
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育的文化差异和多元性
- 创意与艺术教学展示课件
- 甲功五项检查原理
- 田间单对角线取样法课件
- 中职护理教学课件模板
- 新解读《GB-T 36797-2018装修防开裂用环氧树脂接缝胶》
- 用电安全知识培训课件通讯
- 新解读《GB-T 35030 - 2018烟花发射高度、发射偏斜角、辐射半径测定方法》
- 生鲜超市基本知识培训
- 急性上呼吸道感染咳嗽护理查房
- 物业消防安全管理制度
- 无线电监测技术设施运行维护项目需求
- NSA2000变频器使用说明书
- 动物生理学电子教案
- 2025年电梯修理T证试题(附答案)
- 学校开荒保洁服务方案
- DB32-T 3144-2016普通高校单位综合能耗、电耗限额及计算方法
- 劳动合同样本范例2025年
- 文档管理与归档制度
- 《幼儿园教师家庭教育指导能力现状调查》
- 华东师大版八年级下册数学全册教案(2022年12月修订)
评论
0/150
提交评论