




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
光学习题及答案练习二十二 光的相干性 双缝干涉 光程一.选择题1. 有三种装置(1) 完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2) 同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上;(3) 用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上.以上三种装置,能在屏上形成稳定干涉花样的是(A) 装置(3).(B) 装置(2).(C) 装置(1)(3).(D) 装置(2)(3).2. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 把两个缝的宽度稍微调窄.(C) 使两缝的间距变小.(D) 改用波长较小的单色光源.s1s2n1n2P图22.13. 如图22.1所示,设s1、s2为两相干光源发出波长为l的单色光,分别通过两种介质(折射率分别为n1和n2,且n1n2)射到介质的分界面上的P点,己知s1P = s2P = r,则这两条光的几何路程Dr,光程差d 和相位差Dj分别为(A) D r = 0 , d = 0 , Dj = 0.(B) D r = (n1n2) r , d =( n1n2) r , Dj =2p (n1n2) r/l .(C) D r = 0 , d =( n1n2) r , Dj =2p (n1n2) r/l .(D) D r = 0 , d =( n1n2) r , Dj =2p (n1n2) r.4. 如图22.2所示,在一个空长方形箱子的一边刻上一个双缝,当把一个钠光灯照亮的狭缝放在刻有双缝一边的箱子外边时,在箱子的对面壁上产生干涉条纹.如果把透明的油缓慢地灌入这箱子时,条纹的间隔将会发生什么变化?答:图22.2(A) 保持不变.(B) 条纹间隔增加.(C) 条纹间隔有可能增加.(D) 条纹间隔减小.5. 用白光(波长为40007600)垂直照射间距为a=0.25mm的双缝,距缝50cm处放屏幕,则观察到的第一级彩色条纹和第五级彩色条纹的宽度分别是(A) 3.610-4m , 3.610-4m.(B) 7.210-4m , 3.610-3m.(C) 7.210-4m , 7.210-4m.(D) 3.610-4m , 1.810-4m.二.填空题1. 在双缝干涉实验中,两缝分别被折射率为n1和n2的透明薄膜遮盖,二者的厚度均为e ,波长为l的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差Dj = .s1s2s屏图22.32. 如图22.3所示, s1、s2为双缝, s是单色缝光源,当s沿平行于s1、和s2的连线向上作微小移动时, 中央明条纹将向 移动;若s不动,而在s1后加一很薄的云母片,中央明条纹将向 移动.ss屏图22.4aA3. 如图22.4所示,在劳埃镜干涉装置中,若光源s离屏的距离为D, s离平面镜的垂直距离为a(a很小).则平面镜与屏交界处A的干涉条纹应为 条纹;设入射光波长为l,则相邻条纹中心间的距离为 .三.计算题dOs1s2l1l2sD屏图22.51. 在双缝干涉实验中,单色光源s到两缝s1和s2的距离分别为l1和l2,并且l1l2=3l, l为入射光的波长,双缝之间的距离为d,双缝到屏幕的距离为D,如图22.5,求(1) 零级明纹到屏幕中央O点的距离;(2) 相邻明条纹间的距离.s1s2屏图22.6dDOx2. 双缝干涉实验装置如图22.6所示,双缝与屏之间的距离D=120cm,两缝之间的距离d=0.50mm,用波长l=5000 的单色光垂直照射双缝.(1) 求原点O(零级明条纹所在处)上方的第五级明条纹的坐标.(2) 如果用厚度e=1.010-2mm,折射率n=1.58的透明薄膜覆盖在图中的s1缝后面,求上述第五级明条纹的坐标x .练习二十三 薄膜干涉 劈尖一.选择题(1)(2)n1n2n3图23.11. 如图23.1所示, 薄膜的折射率为n2, 入射介质的折射率为n1, 透射介质为n3,且n1n2n3, 入射光线在两介质交界面的反射光线分别为(1)和(2), 则产生半波损失的情况是(A) (1)光产生半波损失, (2)光不产生半波损失.(B) (1)光 (2)光都产生半波损失.(C) (1)光 (2)光都不产生半波损失.(D) (1)光不产生半波损失, (2)光产生半波损失.2. 波长为l的单色光垂直入射到厚度为e的平行膜上,如图23.2,若反射光消失,则当n1n2n3时,应满足条件(1); 当n1n2n3时应满足条件(2). 条件(1),条件(2)分别是n1n2dln3图23.2(A) (1)2ne = kl, (2) 2ne = kl.(B) (1)2ne = kl + l/2, (2) 2ne = kl+l/2.(C) (1)2ne = kll/2, (2) 2ne = kl.(D) (1)2ne = kl, (2) 2ne = kll/2.3. 由两块玻璃片(n1 = 1.75)所形成的空气劈尖,其一端厚度为零,另一端厚度为0.002cm,现用波长为7000 的单色平行光,从入射角为30角的方向射在劈尖的表面,则形成的干涉条纹数为(A) 27.(B) 56.(C) 40.(D) 100.4. 空气劈尖干涉实验中, (A) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时,条纹变稀,从中心向两边扩展.(B) 干涉条纹是垂直于棱边的直条纹, 劈尖夹角变小时,条纹变密,从两边向中心靠拢.(C) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时,条纹变疏,条纹背向棱边扩展.(D) 干涉条纹是平行于棱边的直条纹, 劈尖夹角变小时,条纹变密,条纹向棱边靠拢.5. 一束波长为l的单色光由空气入射到折射率为n的透明薄膜上,要使透射光得到加强,则薄膜的最小厚度应为(A) l/2.n1 q1q1 n1 l图23.3(B) l/2n.(C) l/4.(D) l/4n.二.填空题1. 如图23.3所示,波长为l的平行单色光垂直照射到两个劈尖上,两劈尖角分别为 q1和q2 ,折射率分别为n1和n2 ,若二者形成干涉条纹的间距相等,则q1 , q2 , n1和n2之间的关系是 .2. 一束白光垂直照射厚度为0.4mm的玻璃片,玻璃的折射率为1.50,在反射光中看见光的波长是 ,在透射光中看到的光的波长是 .3. 空气劈尖干涉实验中,如将劈尖中充水,条纹变化的情况是 ,如将一片玻璃平行的拉开, 条纹变化的情况是 .三.计算题On1n1n1l图23.41. 波长为l的单色光垂直照射到折射率为n2的劈尖薄膜上, n1n2n3,如图23.4所示,观察反射光形成的条纹.(1) 从劈尖顶部O开始向右数第五条暗纹中心所对应的薄膜厚度e5是多少?(2) 相邻的二明纹所对应的薄膜厚度之差是多少?2. 在折射率n=1.50的玻璃上,镀上n=1.35的透明介质薄膜,入射光垂直于介质膜表面照射,观察反射光的干涉,发现对l1=6000的光干涉相消,对l2=7000的光波干涉相长,且在60007000之间没有别的波长的光波最大限度相消或相长的情况,求所镀介质膜的厚度.练习二十四 牛顿环 迈克耳逊干涉仪 衍射现象一.选择题1. 严格地说,空气的折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去时,干涉圆环的半径将(A) 变小.(B) 不变.(C) 变大.(D) 消失.l1.521.621.621.521.75P图24.12. 在图24.1所示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P处形成的圆斑为(A) 全明.(B) 全暗.(C) 右半部明,左半部暗.(D) 右半部暗,左半部明.3. 在一块平玻璃片B上,端正地放一个顶角接近于p,但小于p的圆锥形平凸透镜A,在A、B间形成空气薄层,如图24.2所示,当用单色光垂直照射平凸透镜时,从玻璃片的下面可观察到干涉条纹,其特点是图24.2AB(A) 中心暗的同心圆环状条纹,中心密,四周疏.(B) 中心明的同心圆环状条纹,中心疏,四周密.(C) 中心暗的同心圆环状条纹,环间距相等.(D) 中心明的同心圆环状条纹,环间距相等.4. 把观察牛顿环装置中的平凸透镜换成半径很大的半圆柱面透镜, 用单色光垂直照射半圆柱面的平凸透镜时,观察到的干涉条纹的特点是(A) 间隔不等的与圆柱面母线平行的干涉直条纹,中间密,两边稀.(B) 间隔不等的与圆柱面母线平行的干涉直条纹,中间稀,两边密.(C) 间隔相等的与圆柱面母线平行的干涉直条纹.(D) 间隔相等的与圆柱面母线垂直的干涉直条纹.5. 在迈克尔逊干涉仪的一条光路中放入一个折射率为n,厚度为d的透明片后,这条光路的光程增加了(A) 2(n1)d.(B) 2nd.(C) (n1)d.(D) nd.二.填空题1. 用l = 6000 的单色光垂直照射牛顿环装置时,从中央向外数第4个暗环(中央暗斑为第1个暗环)对应的空气膜厚度为 mm.2. 光强均为I0 的两束相干光相遇而发生干涉时, 在相遇区域内有可能出现的最大光强是 .3. 惠更斯菲涅耳原理的基本内容是:波阵面上各个面积元上,所发出的子波在观察点P的 , 决定了P点的合振动及光强.三.计算题lOA图24.3ln1n1n2n2n2n2图24.41. 图24.3所示为一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R=400cm,用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm. (1) 求入射光的波长.(2) 设图中OA=1.00cm,求在半径为OA的范围内可观察到的明环数目. 2. 在如图24.4所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率n1=1.50)之间的空气(n2=1.00)改换成水 (n2 = 1.33 ),求第k 个暗环半径的相对改变量 (rk rk ) / rk .练习二十五 单缝衍射 圆孔衍射 光学仪器的分辨率一.选择题1. 对杨氏双缝干涉的理解应为(A) 杨氏双缝干涉是两狭缝衍射光的干涉,因此干涉条纹的分布受单缝衍射因子的调制.(B) 杨氏双缝干涉完全是两束相干光的干涉.(C) 杨氏双缝干涉是两条单缝的衍射,无干涉.(D) 杨氏双缝干涉是双光束干涉与单缝衍射的迭加.2. 关于半波带正确的理解是(A) 将单狭缝分成许多条带,相邻条带的对应点到达屏上会聚点的距离之差为入射光波长的1/2.(B) 将能透过单狭缝的波阵面分成许多条带, 相邻条带的对应点的衍射光到达屏上会聚点的光程差为入射光波长的1/2.(C) 将能透过单狭缝的波阵面分成条带,各条带的宽度为入射光波长的1/2.(D) 将单狭缝透光部分分成条带,各条带的宽度为入射光波长的1/2.3. 波长l = 5000 的单色光垂直照射到宽度a = 0.25 mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d = 12 mm ,则凸透镜的焦距为 (A) 2m.(B) 1m.(C) 0.5m.(D) 0.2m. (E) 0.1m. 4. 单色光l垂直入射到单狭缝上,对应于某一衍射角q , 此单狭缝两边缘衍射光通过透镜到屏上会聚点A的光程差为d = 2l , 则(A) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A点为明点. (B) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A点为暗点.(C) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A点为明点.(D) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A点为暗点.5. 一直径为2mm的HeNe激光束从地球上发出投射于月球表面,己知月球和地面的距离为376103km, HeNe激光的波长为6328,则月球得到的光斑直径为(A) 0.29103m.(B) 2.9.103 m.(C) 290103 m.(D) 29103 m.二.填空题1. 在单缝夫琅和费衍射实验中,设第一级暗纹的衍射角很小,若用钠黄光(l15890 )照射单缝得到中央明纹的宽度为4.0mm , 则用l2=4420 的蓝紫色光照射单缝得到的中央明纹宽度为 .2. 波长为5000 6000 的复合光平行地垂直照射在a=0.01mm的单狭缝上,缝后凸透镜的焦距为1.0m,则此二波长光零级明纹的中心间隔为 ,一级明纹的中心间隔为 .3. 己知天空中两颗星相对于一望远镜的角距离为6.7110-7rad,它们发出的光波波长按5500 计算,要分辨出这两颗星,望远镜的口镜至少要为 .三.计算题1. 用波长l = 6328的平行光垂直照射单缝,缝宽a = 0.15mm,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7mm,求此透镜的焦距.2. 在某个单缝衍射实验中,光源发出的光含有两种波长l1和l2,并垂直入射于单缝上,假如l1的第一级衍射极小与l2的第二级衍射极小相重合,试问(1) 这两种波长之间有何关系?(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?练习二十二 光的相干性 双缝干涉一.选择题 A C C D B 二.填空题1. 2p(n1-n2)e/l. 2. 下, 上.3. 暗, Dx=Dl/(2a) .三.计算题1. 光程差 d=(l2+r2)-(l1+r1)=(l2-l1)+(r2-r1)= l2-l1+xd/D=-3l+xd/D(1)零级明纹 d=0有x=3lD/d(2)明纹d=kl=-3l+xk d/D有xk=(3lkl)D/dDx=xk+1-xk=Dl/d2.(1)光程差 d=r2-r1=xd/D=klxk=klD/d因k=5有 x5=6mm(2)光程差d=r2-(r1-e+ne)=r2-r1-(n-1)e=xd/D-(n-1)e=kl有 x =kl+(n-1)eD/d因k=5,有 x 5=19.9mm练习二十三 薄膜干涉 劈尖一.选择题 B C A C B 二.填空题1. n1q1= n2q2. 2. 0.48mm; 0.6mm, 0.4mm.3. 依然平行等间距直条纹,但条纹变密;依然平行等间距直条纹,条纹间距不变,但条纹平行向棱边移动. 三.计算题1.(1)因n1n2n3,所以光程差d=2n2e暗纹中心膜厚应满足dk=2n2ek=(2k+1)l/2 ek=(2k+1)l/(4n2)对于第五条暗纹,因从尖端数起第一条暗纹d=l/2,即 k=0,所以第五条暗纹的k=4,故e4=9l/(4n2)(2)相邻明纹对应膜厚差De=ek+1-ek=l/(2n2)2因n1n2l1,且中间无其他相消干涉与相长干涉,有k1=k2=k,故(2k+1)l1/2=2kl2/2k=l1/2(l2-l1)=3得 e=kl2/(2n2)=7.7810-4mm练习二十四 牛顿环 迈克耳逊干涉仪一.选择题 C D D B A 二.填空题1. 0.9. 2. 4I0 .3. 干涉(或相干叠加). 三.计算题1. (1) 明环半径 r=(2k-1)Rl/21/2l=2r2/(2k-1)R=5000(2) (2k-1)=2r2/(Rl)=100k=50.5故在OA范围内可观察到50个明环(51个暗环)2. 暗环半径 练习二十五 单缝 圆孔 分辨率一.选择题 A B B D C 二.填空题1. 3.0mm. 2. 0, 15mm.3. 1.0m. 三.计算题1. 单缝衍射暗纹角坐标满足 asinqk=kl线坐标满足 xk=ftanqfsinq=f kl/aDx=xk-xk-1fl/afaDx/l=400mm=0.4m;2.(1) 单缝衍射暗纹角坐标满足 asinq1=l1 asinq2=2l2因重合有asinq2=asinq1,所以l1=2l2(2) asinq1=k1l1 = k12l2 asinq2=k2l2asinq1= asinq2得 k2=2k1故当k2=2k1时,相应的暗纹重合妹妹,你就这样悄无声息地消失在茫茫的人海,消失在我日夜的想念中。不曾带走我对你的点点回忆。千重山,万重水,割不断的是情深似海如潮的的思念。默默坐在屏前,手指在键盘上轻轻的划过,所有的怀想,所有根植脑海抹不去的记忆,都凝聚指尖,触动着流年的痕迹,把一纸素笺的心事,轻吟纸笺,等你从陌上归来。我的妹妹,你在哪里啊?哪里?问天,天不语,问己,己不明。想你的日子,见不到你的踪迹,让我陷入了沉思。有关你的一切,早已深深铭刻在心里。妹妹,你是我心底最珍贵的爱!回想起我们一起度过的时光,是那么的美好。所有的细节历历在目。还记得我们初遇的散文吧吗?第一次与你相遇,是在你的空间,欣赏你温婉如水的文字,一看到你的笔名冰格格,不问为什么,就一下子惊艳了我的目光,一下子就喜欢上了你高贵典雅的名字,喜欢上了你才华横溢精彩的文字,喜欢上了你冰清玉洁的聪慧,喜欢上了你的一切。妹妹,生命中的许多东西是可遇不可求的。姐姐能幸运的遇上你,是天意,是缘分,更是生命中注定让我们有共同爱好文字,走到了一起。在那些快乐美好的日子里,我们互相点评文章,互相推心置腹的发短信交流,很快,我们就成了无话不说的网上好姐妹,彼此都会为伤感文字而流泪,也会为彼此的喜悦而欢呼雀跃妹妹,姐姐永远不会忘记,在姐姐最困难的时候,是你不离不弃的向姐姐伸出援助之手,帮我渡过难关。是你一次次发短信打电话,询问病情,关心着姐姐。记得那次,当电话那端,传来千里之外,你亲切的声音,那一刻,姐姐接电话的手在颤抖,心在激烈的跳动,姐姐卸掉所有的坚强面具,再也控制不了自己的情感,竟在你面前痛哭的发泄流泪。你用温暖的话语,安慰鼓励着姐姐,为姐姐抹去眼角的泪痕,把微笑的阳光,洒向姐姐的世界,从此,你就成了姐姐一生的感恩。妹妹,你在姐姐的眼里,是没有血缘关系,如同骨肉的亲人,甚至超越亲情的朋友,你留给姐姐的是太多太多的感动。常常让姐姐沉浸在绵绵幸福的回忆中。妹妹,在姐姐悲痛欲绝地行走在死亡的边缘,是你的到来,让友情如一盏明灯,照彻我的灵魂,温暖着姐姐黑夜里的寒冷。从散文网到007等,一路走来,一根网线把我们紧紧的连在一起,从相遇到相识,相知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲状腺术后并发症的护理
- 大学就业创业教育体系构建
- 肿瘤细胞培养方法
- 燃气安全知识培训课件
- 肿瘤突变负荷(TMB)研究与应用
- 教师清廉建设培训
- 电脑研发流程
- 镁屑处理工艺流程与安全管理
- 热煤油系统培训课件
- 小学生地震教育
- 福利院财务管理制度
- 2025至2030中国汽车轮毂行业发展分析及发展前景与投资报告
- 郴州市2025年中考第二次模考历史试卷
- 2025年供应链管理考试题及答案
- 2024-2025学年人教版数学五年级下学期期末试卷(含答案)
- 食用薄荷介绍课件
- 美容院和干洗店合同协议
- 2025年北师大版七年级数学下册专项训练:整式的混合运算与化简求值(原卷版+解析)
- AIoT落地化培训大纲
- 前程无忧测评题库
- 脓毒症性凝血病诊疗中国专家共识(2024版)解读
评论
0/150
提交评论