解直角三角形应用(上课)_第1页
解直角三角形应用(上课)_第2页
解直角三角形应用(上课)_第3页
解直角三角形应用(上课)_第4页
解直角三角形应用(上课)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解直角三角形应用举例,事实上,在直角三角形的五个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素,解直角三角形:在直角三角形中,由已知元素求未知元素的过程,在解直角三角形的过程中,一般要用到下面一些关系:,解直角三角形,(2)两锐角之间的关系,AB90,(3)边角之间的关系,(1)三边之间的关系,(勾股定理),在解直角三角形的过程中,一般要用到下面一些关系:,例4:2008年10月15日“神舟”7号载人航天飞船发射成功当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km),分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点,如图,O表示地球,点F是飞船的位置,FQ是O的切线,切点Q是从飞船观测地球时的最远点的长就是地面上P、Q两点间的距离,为计算的长需先求出POQ(即a),例题,解:在图中,FQ是O的切线,FOQ是直角三角形,PQ的长为,当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km,利用解直角三角形的知识解决实际问题的一般过程是:,1.将实际问题抽象为数学问题;,(画出平面图形,转化为解直角三角形的问题),2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;,3.得到数学问题的答案;,4.得到实际问题的答案.,视线,视线,仰角,俯角,在进行观察或测量时,,从上往下看,视线与水平线的夹角叫做俯角.,从下向上看,视线与水平线的夹角叫做仰角;,例4:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯角为60,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m),分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30,=60,RtABC中,a=30,AD120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC,仰角与俯角,解:如图,a=30,=60,AD120,答:这栋楼高约为277.1m,1.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角54,观察底部B的仰角为45,求旗杆的高度(精确到0.1m),解:在等腰三角形BCD中ACD=90,BC=DC=40m,在RtACD中,所以AB=ACBC=55.240=15.2,答:棋杆的高度为15.2m.,练习,2.如图,沿AC方向开山修路为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取ABD=140,BD=520m,D=50,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m),BED=ABDD=90,答:开挖点E离点D332.8m正好能使A,C,E成一直线.,解:要使A、C、E在同一直线上,则ABD是BDE的一个外角,1数形结合思想.,方法:把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,构造出直角三角形.,解题思想与方法小结:,2方程思想.,3转化(化归)思想.,例5.如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里),65,34,P,B,C,A,指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的北偏东30点B在点O的南偏西45(西南方向),方位角,介绍:,例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?,解:如图,在RtAPC中,,PCPAcos(9065),80cos25,800.91,=72.8,在RtBPC中,B34,当海轮到达位于灯塔P的南偏东34方向时,它距离灯塔P大约130.23海里,65,34,P,B,C,A,气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45方向的B点生成,测得台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60方向继续移动以O为原点建立如图12所示的直角坐标系(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭如果某城市(设为A点)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?,解:(1),(2)过点C作于点D,如图2,则,在中,台风从生成到最初侵袭该城要经过11小时,例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60方向上,航行12海里到达D点,这时测得小岛A在北偏东30方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?,B,A,D,F,60,12,30,B,A,D,F,解:由点A作BD的垂线,交BD的延长线于点F,垂足为F,AFD=90,由题意图示可知DAF=30,设DF=x,AD=2x,则在RtADF中,根据勾股定理,在RtABF中,,解得x=6,10.48没有触礁危险,30,60,解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l,化整为零,积零为整,化曲为直,以直代曲的解决问题的策略,与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢?,我们设法“化曲为直,以直代曲”我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1.,在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,hn,然后我们再“积零为整”,把h1,h2,hn相加,于是得到山高h.,以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容,例6.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和;(2)坝顶宽AD和斜坡AB的长(精确到0.1m),解:(1)在RtAFB中,AFB=90,在RtCDE中,CED=90,1.在解直角三角形及应用时经常接触到的一些概念(方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论