沪科版八年级数学下21.2方差与标准差.ppt_第1页
沪科版八年级数学下21.2方差与标准差.ppt_第2页
沪科版八年级数学下21.2方差与标准差.ppt_第3页
沪科版八年级数学下21.2方差与标准差.ppt_第4页
沪科版八年级数学下21.2方差与标准差.ppt_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复习回顾,1、10位同学的鞋号由小到是20,20,21,21,22,22,22,22,23,23。这组数据中,三个集中趋势的统计量中,厂方最关注的是哪个?最不感兴趣的是哪个?厂方在生产中,如何安排生产,请你给出一个方案。,甲众数:15甲中位数:15,乙众数:15乙中位数:15,观察上述两组数据,哪种小麦长得比较整齐?你认为数据的集中趋势能表示小麦长势整齐情况吗?,2、某农业科研所对新培育的甲、乙两个品种的小麦长势进行研究,分别抽取10株麦苗,测得株高如下(单位:cm):甲:13,15,15,15,15,15,15,15,15,18;乙:14,14,13,15,13,18,16,18,15,15,甲平均:15.1,乙平均:15.1,20.2数据的离散程度-方差,教学目标:(1)经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性。.(2)掌握方差概念,会计算方差,理解它们的统计意义。(3)了解方差刻画数据离散程度的统计量,并在具体情境中加以应用。,质检部门从A、B两台机床生产直径为(200.2)的零件中各抽取了10只,对这些零件的直径了进行检测。结果如下(单位:mm):机床A:20.0,19.8,20.1,20.2,19.9,20.0,20.2,19.8,20.2,19.8;机床B:20.0,20.0,19.9,20.0,19.9,20.2,20.0,20.1,20.1,19.8.思考:根据以上结果评判哪台机床加工零件的精度更稳定。1)请你算一算它们的平均数和极差。,平均数、中位数均为20.0mm,极差均为0.4mm,2)是否可由此断定两台机床生产的零件同样标准呢?,机床A:20.0,19.8,20.1,20.2,19.9,20.0,20.2,19.8,20.2,19.8;机床B:20.0,20.0,19.9,20.0,19.9,20.2,20.0,20.1,20.1,19.8.,3)为避免特殊数据的影响,你认为考虑这两组数据相对于什么数的波动情况较合适?,平均数,1234567891012345678910,20.220.120.019.919.819.719.6,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,机床A,机床B,作图:将上述数据绘制成图,00.20.10.2-0.100.20.20.2-0.2,000.100.10.200.10.1-0.2,如何更加精确地描述两组数据相对于平均数的波动情况?请填表:,把这些差相加?,把这些差取绝对值相加?,把这些差的平方相加?,想一想:你认为这几种方法中哪一种能更好的反映数据的波动情况?为什么?,结果为零,计算麻烦,在一组数据中,各数据与它们平均数的差的平方的平均数叫方差。,方差定义,4、为什么要除以数据个数n?,3、为什么用偏差的平方代替偏差的绝对值?,1、请说出公式中每个元素的含义。,2、为什么要用“每个数据”与“平均数”相减?,方差可以反映一组数据的离散程度,一般来说,一组数据的方差越小,这组数据离散程度越小,这组数据就越稳定。,1)实际应用请分别计算A、B两组数据的方差,并说出哪厂生产的零件直径与误差的波动较小?,2)谈谈方差的作用,方差公式的变形,思考:方差的单位与原数据的单位一致吗?要想单位一致怎么办?,例题精选,例为了考察甲乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16;问:哪种小麦长得比较整齐?,S2甲(cm2)S2乙(cm2),因为S2甲S2乙,所以甲种小麦长得比较整齐。,解:,练习:,1.若甲组数据的方差比乙组数据的方差大,那么下列说法正确的是(),A.甲组数据的平均数比乙组数据的平均数大B.甲组数据比乙组数据稳定C.乙组数据比甲组数据稳定D.甲,乙组的稳定性不能确定,C,练习:,2.一组数据的7、8、9、10、11、12、13的方差是_.,3.已知一组数据-1,x,0,1,-2的平均数是0,那么这组数据的方差是_.,反映数据离散程度的指标是什么?在一次数学测试中,甲、乙两班的平均成绩相同,甲班成绩的方差为42,乙班成绩的方差为35,这样的结果说明两个班的数学学习状况各有什么特点?,(探究题)已知数据x1、x2、x3、x4、x5的平均数是2,方差是,那么另一组数据2x11,2x21,2x31,2x41,2x51的平均数和方差分别是()A、2,B、4,C、2,D、3,,D,总结:,(2)若x1,x2,x3,x4,xn方差为S2,则x1a,x2a,x3a,x4a,xna的方差仍是S2,而ax1,ax2,ax3,ax4,axn的方差是a2S2。,已知一组数据1,2,n的方差是a。平均数是b则1)数据1-4,2-4,n4的方差是;平均数_.2)数据31,32,3n的方差是。平均数是_.3)数据31,32,3n方差是.平均数是_.,拓展延伸,a,b-4,9a,3b,3b-4,9a,你的收获,今天我们一起探索了数学的有关什么知识?你取得了哪些收获?,平均数是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论