已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Semi-supervisedLearning,Introduction,Supervisedlearning:,=1E.g.:image,:classlabelsSemi-supervisedlearning:,=1,=+Asetofunlabeleddata,usuallyURTransductivelearning:unlabeleddataisthetestingdataInductivelearning:unlabeleddataisnotthetestingdataWhysemi-supervisedlearning?Collectingdataiseasy,butcollecting“labelled”dataisexpensiveWedosemi-supervisedlearninginourlives,Whysemi-supervisedlearninghelps?,Labelleddata,Unlabeleddata,cat,dog,(Imageofcatsanddogswithoutlabeling),Whysemi-supervisedlearninghelps?,Thedistributionoftheunlabeleddatatellussomething.,Usuallywithsomeassumptions,Whoknows?,Outline,Semi-supervisedLearningforGenerativeModel,SupervisedGenerativeModel,Givenlabelledtrainingexamples1,2lookingformostlikelypriorprobabilityP(Ci)andclass-dependentprobabilityP(x|Ci)P(x|Ci)isaGaussianparameterizedbyand,1,2,1|=|11|11+|22,With1,2,1,2,DecisionBoundary,Semi-supervisedGenerativeModel,Givenlabelledtrainingexamples1,2lookingformostlikelypriorprobabilityP(Ci)andclass-dependentprobabilityP(x|Ci)P(x|Ci)isaGaussianparameterizedbyand,DecisionBoundary,Theunlabeleddatahelpre-estimate1,2,1,2,1,2,Semi-supervisedGenerativeModel,Initialization:=1,2,1,2,Step1:computetheposteriorprobabilityofunlabeleddataStep2:updatemodel,1|,1=1+1|,1=111+11|1|,Backtostep1,Dependingonmodel,:totalnumberofexamples1:numberofexamplesbelongingtoC1,Thealgorithmconvergeseventually,buttheinitializationinfluencestheresults.,E,M,Why?,MaximumlikelihoodwithlabelleddataMaximumlikelihoodwithlabelled+unlabeleddata,=,=,+,=|11+|22,(cancomefromeitherC1andC2),Closed-formsolution,Solvediteratively,=1,2,1,2,Semi-supervisedLearningLow-densitySeparation,非黑即白,“Black-or-white”,Self-training,Given:labelleddataset=,=1,unlabeleddataset=+Repeat:TrainmodelfromlabelleddatasetApplytotheunlabeleddatasetObtain,=+Removeasetofdatafromunlabeleddataset,andaddthemintothelabeleddataset,Independenttothemodel,Howtochoosethedatasetremainsopen,Regression?,Pseudo-label,Youcanalsoprovideaweighttoeachdata.,Self-training,Similartosemi-supervisedlearningforgenerativemodelHardlabelv.s.Softlabel,Consideringusingneuralnetwork,Newtargetforis10,Class1,70%Class130%Class1,(networkparameter)fromlabelleddata,Newtargetforis0.70.3,Doesntwork,Itlookslikeclass1,thenitisclass1.,Hard,Soft,Entropy-basedRegularization,Distribution,Good!,Good!,Bad!,=15,Entropyof:Evaluatehowconcentratethedistributionis,=0,=0,=5,=15,Assmallaspossible,=,+,labelleddata,unlabeleddata,Outlook:Semi-supervisedSVM,Findaboundarythatcanprovidethelargestmarginandleasterror,Enumerateallpossiblelabelsfortheunlabeleddata,Semi-supervisedLearningSmoothnessAssumption,近朱者赤,近墨者黑,“Youareknownbythecompanyyoukeep”,SmoothnessAssumption,Assumption:“similar”hasthesameMoreprecisely:xisnotuniform.If1and2arecloseinahighdensityregion,1and2arethesame.,connectedbyahighdensitypath,Sourceofimage:/files/pinwheel.png,1,2,3,1and2havethesamelabel,2and3havedifferentlabels,SmoothnessAssumption,“indirectly”similarwithsteppingstones,(TheexampleisfromthetutorialslidesofXiaojinZhu.),similar?,Notsimilar?,Sourceofimage:,SmoothnessAssumption,Carticles,(TheexampleisfromthetutorialslidesofXiaojinZhu.),SmoothnessAssumption,Carticles,(TheexampleisfromthetutorialslidesofXiaojinZhu.),ClusterandthenLabel,Cluster1,Cluster2,Cluster3,Class1,Class2,Class2,Usingallthedatatolearnaclassifierasusual,Graph-basedApproach,Howtoknow1and2arecloseinahighdensityregion(connectedbyahighdensitypath),Representedthedatapointsasagraph,E.g.Hyperlinkofwebpages,citationofpapers,Graphrepresentationisnaturesometimes.,Sometimesyouhavetoconstructthegraphyourself.,Graph-basedApproach-GraphConstruction,Definethesimilarity,betweenandAddedge:KNearestNeighbore-NeighborhoodEdgeweightisproportionaltos,=2,GaussianRadialBasisFunction:,TheimageisfromthetutorialslidesofAmarnagSubramanyaandParthaPratimTalukdar,Graph-basedApproach,Class1,Class1,Propagatethroughthegraph,Thelabelleddatainfluencetheirneighbors.,x,Graph-basedApproach,Definethesmoothnessofthelabelsonthegraph,=12,2,Smallermeanssmoother,x1,x2,x3,x4,2,3,1,1,1=0,2=1,3=1,4=0,=0.5,=3,Foralldata(nomatterlabelledornot),Graph-basedApproach,Definethesmoothnessofthelabelsonthegraph,=,L:(R+U)x(R+U)matrix,GraphLaplacian,=,y:(R+U)-dimvector,=,=0220301031000110,D=5003000000005001,=12,2,Graph-basedApproach,Definethesmoothnessofthelabelsonthegraph,=,=12,2,Dependingonnetworkparameters,=,+,J.Weston,F.Ratle,andR.Collobert,“Deeplearningviasemi-supervisedembedding,”ICML,2008,Asaregularizationterm,smooth,smooth,smooth,Semi-supervisedLearningBetterRepresentation,去蕪存菁,化繁為簡,LookingforBetterRepresentation,Findthelate
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业应收账款管理与催收策略
- 机械维修月度工作总结
- 通信线路维护合同范本
- 直播带货实战提升销售业绩的技巧
- 实战策略护卫犬方向中级工作计划解析
- 公墓管理员日常管理流程优化方案
- 预算决算审计合同范本
- 餐厅加盟协议合同范本
- 零售行业员工岗位职责手册
- 六年级科学下册第二单元健康成长教学设计冀教版冀教版小学六年级下册自然科学教案(2025-2026学年)
- 公司非洲海外项目现场生活手册
- 《2025急性冠脉综合征患者管理指南》解读
- 口头医嘱制度与执行流程完整版
- 初一小古文试题及答案
- 装修催款通知函
- 厂区内动火作业管理制度模版(2篇)
- 大学生心理健康教育知到智慧树章节测试课后答案2024年秋石家庄工程职业学院
- 2025版生态保护项目捐赠合同规范文本3篇
- 2024年中交分包商培训参考答案
- 双通道脊柱内镜技术临床应用专家共识(2024版)解读
- 《可复制的领导力》读书分享
评论
0/150
提交评论