反比例函数知识点归纳(重点)_第1页
反比例函数知识点归纳(重点)_第2页
反比例函数知识点归纳(重点)_第3页
反比例函数知识点归纳(重点)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考复习 反比例函数基础知识(一)反比例函数的概念1()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3反比例函数的自变量,故函数图象与x轴、y轴无交点(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)(三)反比例函数及其图象的性质1函数解析式:()2自变量的取值范围:3图象:(1)图象的形状:双曲线 越大,图象的弯曲度越小,曲线越平直图像越远离坐标轴越小,图象的弯曲度越大图像越靠近坐标轴(2)图象的位置和性质:与坐标轴没有交点,当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上 图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上4k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PAx轴于A点,PBy轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是)如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QCPA的延长线于C,则有三角形PQC的面积为 图1 图25说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论(2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称(四)实际问题与反比例函数1求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式2注意学科间知识的综合,但重点放在对数学知识的研究上(五)充分利用数形结合的思想解决问题三、例题分析1反比例函数的概念(1)下列函数中,y是x的反比例函数的是( )Ay=3x B C3xy=1 D(2)下列函数中,y是x的反比例函数的是( )AB CD2图象和性质(1)已知函数是反比例函数,若它的图象在第二、四象限内,那么k=_若y随x的增大而减小,那么k=_(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于 第_象限(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_象限(4)已知ab0,点P(a,b)在反比例函数的图象上, 则直线不经过的象限是( )A第一象限 B第二象限 C第三象限 D第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点, 则一次函数y=kx+m的图象经过( )A第一、二、三象限 B第一、二、四象限C第一、三、四象限 D第二、三、四象限(6)已知函数和(k0),它们在同一坐标系内的图象大致是( ) A B C D3函数的增减性(1)在反比例函数的图象上有两点,且,则的值为( )A正数 B负数 C非正数 D非负数(2)在函数(a为常数)的图象上有三个点,则函数值、的大小关系是( )ABCD(3)下列四个函数中:; y随x的增大而减小的函数有( )A0个 B1个 C2个 D3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”)4解析式的确定(1)若与成反比例,与成正比例,则y是z的( )A正比例函数 B反比例函数 C一次函数 D不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为 (2,m),则m=_,k=_,它们的另一个交点为_(3)已知反比例函数的图象经过点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论