




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲 巧数图形 数出某种图形的个数是一类有趣的图形问题。由于图形千变万化,错综复杂,所以准确地数出其中包含的某种图形的个数,可以培养我们认真,仔细,做事耐心有条理的好习惯。要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。 例1数出下图中共有多少条线段。分析与解:1.我们可以按照线段的左端点的位置分为A,B,C三类。如下图所示,以A为左端点的线段有_条,以B为左端点的线段有_条,以C为左端点的线段有_条。所以共有_6(条)。2. 我们也可以按照一条线段是由几条小线段构成的来分类。如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有_条,由两条小线段构成的线段有_条,由三条小线段构成的线段有_条。所以,共有_6(条)。 由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。例2 下列各图形中,三角形的个数各是多少?分析与解:因为底边上的任何一条线段都对应一个三角形(以顶点及这条线段 的两个端点为顶点的三角形),所以各图中最大的三角形的底边所包含的线段的条数就是三角形的总个数。由前面数线段的方法知,图(1)中有三角形123(个)。 图(2)中有三角形_(个)。 图(3)中有三角形_(个)。图(4)中有三角形_15(个)。图(5)中有三角形_=21(个)。例3下列图形中各有多少个三角形?分析与解:(1)只需分别求出以AB,ED为底边的三角形中各有多少个三角形。 以AB为底边的三角形ABC中,有三角 1236(个)。以ED为底边的三角形CDE中,有三角形_(个)。 所以共有三角形_(个)。这是以底边为标准来分类计算的方法。它的好处是可以借助“求底边线段数”而得出三角形的个数。我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。由1个小块组成的三角形有3个;由2个小块组成的三角形有5个;由3个小块组成的三角形有1个;由4个小块组成的三角形有_个;由6个小块组成的三角形有_个。所以,共有三角形3512112(个)。(2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为分类标准来计算:由1个小块组成的三角形有4个;由2个小块组成的三角形有_个; 由3个小块组成的三角形有_个;由4个小块组成的三角形有_个;由6个小块组成的三角形有_个。所以,共有三角形_15(个)。例4右图中有多少个三角形?解:假设每一个最小三角形的边长为1。按边的长度来分类计算三角形的个数。边长为1的三角形,从上到下一层一层地数,有1357=16(个);边长为2的三角形(由_个小三角形组成)(注意,有一个尖朝下的三角形)有_7(个);边长为3的三角形有_(个);边长为4的三角形有_ 个。所以,共有三角形1673127(个)。例5数出下页左上图中锐角的个数。分析与解:在图中加一条虚线,如下页右上图。容易发现,所要数的每个角都对应一个三角形(这个角与它所截的虚线段构成的三角形),这就回到例2,从而回到例1的问题,即所求锐角的个数,就等于从O点引出的6条射线将虚线截得的线段的条数。虚线上线段的条数有_例6在下图中,包含“*”号的长方形和正方形共有多少个? 解:按包含的小块分类计数(如何数一定数量的长方形小块有多少?有规则吗?)包含1小块的有1个;包含2小块的有_个;包含3小块的有4个;包含4小块的有_个;包含5小块的有2个;包含6小块的有_个;包含8小块的有4个;包含9小块的有_个;包含10小块的有_个;包含12小块的有4个;包含15小块的有_个。所以共_(个)。 练习1.下列图形中各有多少条线段?2.下列图形中各有多少个三角形?3.下列图形中,各有多少个小于180的角? 4.下列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蜂产品加工工综合考核试卷及答案
- 人工合成晶体工成本控制考核试卷及答案
- 按摩咨询接待服务方案
- 韩束网店营销策划方案
- 建筑方案设计师考核
- 2025版司法局《刑事自诉案件反诉状》(空白模板)
- 玉米须茶营销方案策划
- 屋顶建筑垃圾转运方案设计
- 宿舍建筑方案设计图纸
- 城乡规划建筑方案设计
- 软件系统维护合同范本
- 桥架购销合同范本4篇
- 2025年江西省高考物理试卷真题(含答案)
- 2025年政策影响诊断人工智能在体育产业应用政策导向与市场趋势分析方案
- 涉旅安全培训讲话课件
- GB/T 20716.2-2025道路车辆牵引车和挂车之间的电连接器(7芯)第2部分:12 V标称电压车辆的制动系统和行走系的连接
- (新教材)2025年秋期人教版一年级上册数学全册核心素养教案(教学反思无内容+二次备课版)
- 2025广西公需科目真题续集(附答案)
- 学校“1530”安全教育记录表(2024年秋季全学期)
- 公路工程标准施工招标文件(2018年版)
- DL∕T 5776-2018 水平定向钻敷设电力管线技术规定
评论
0/150
提交评论