2012届高考数学第一轮函数的单调性专项复习教案_第1页
2012届高考数学第一轮函数的单调性专项复习教案_第2页
2012届高考数学第一轮函数的单调性专项复习教案_第3页
2012届高考数学第一轮函数的单调性专项复习教案_第4页
2012届高考数学第一轮函数的单调性专项复习教案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档2016全新精品资料全新公文范文全程指导写作独家原创1/152012届高考数学第一轮函数的单调性专项复习教案M23函数的单调性知识梳理1增函数、减函数的定义一般地,对于给定区间上的函数F(X),如果对于属于这个区间的任意两个自变量的值X1、X2,当X1X2时,都有F(X1)F(X2)或都有F(X1)F(X2),那么就说F(X)在这个区间上是增函数(或减函数)如果函数YF(X)在某个区间上是增函数(或减函数),就说F(X)在这一区间上具有(严格的)单调性,这一区间叫做F(X)的单调区间如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间2函数单调性可以从三个方面理解(1)图形刻画对于给定区间上的函数F(X),函数图象如从左向右连续上升,则称函数在该区间上单调递增,函数图象如从左向右连续下降,则称函数在该区间上单调递减(2)定性刻画对于给定区间上的函数F(X),如函数值随自变量的增大而增大,则称函数在该区间上单调递增,如函数值随自变量的增大而减小,则称函数在该区间上单调递减精品文档2016全新精品资料全新公文范文全程指导写作独家原创2/15(3)定量刻画,即定义上述三方面是我们研究函数单调性的基本途径点击双基1下列函数中,在区间(0,2)上为增函数的是AYX1BYCYX24X5DY答案B2函数YLOGA(X22X3),当X2时,Y0,则此函数的单调递减区间是A(,3)B(1,)C(,1)D(1,)解析当X2时,YLOGA50,A1由X22X30X3或X1,易见函数TX22X3在(,3)上递减,故函数YLOGA(X22X3)(其中A1)也在(,3)上递减答案A3(2003年北京朝阳区模拟题)函数YLOG|X3|的单调递减区间是_解析令U|X3|,则在(,3)上U为X的减函数,在(3,)上U为X的增函数又01,在区间(3,)上,Y为X的减函数精品文档2016全新精品资料全新公文范文全程指导写作独家原创3/15答案(3,)4有下列几个命题函数Y2X2X1在(0,)上不是增函数;函数Y在(,1)(1,)上是减函数;函数Y的单调区间是2,);已知F(X)在R上是增函数,若AB0,则有F(A)F(B)F(A)F(B)其中正确命题的序号是_解析函数Y2X2X1在(0,)上是增函数,错;虽然(,1)、(1,)都是Y的单调减区间,但求并集以后就不再符合减函数定义,错;要研究函数Y的单调区间,首先被开方数54XX20,解得1X5,由于2,)不是上述区间的子区间,错;F(X)在R上是增函数,且AB,BA,F(A)F(B),F(B)F(A),F(A)F(B)F(A)F(B),因此是正确的答案典例剖析【例1】如果二次函数F(X)X2(A1)X5在区间(,1)上是增函数,求F(2)的取值范围剖析由于F(2)22(A1)252A11,求F(2)的取值范围就是求一次函数Y2A11的值域,当然就应先求其定义域精品文档2016全新精品资料全新公文范文全程指导写作独家原创4/15解二次函数F(X)在区间(,1)上是增函数,由于其图象(抛物线)开口向上,故其对称轴X或与直线X重合或位于直线X的左侧,于是,解之得A2,故F(2)22117,即F(2)7【例2】讨论函数F(X)(A0)在X(1,1)上的单调性解设1X1X21,则F(X1)F(X2)1X1X21,X2X10,X1X210,(X121)(X221)0又A0,F(X1)F(X2)0,函数F(X)在(1,1)上为减函数【例3】求函数YX的单调区间剖析求函数的单调区间(亦即判断函数的单调性),一般有三种方法(1)图象法;(2)定义法;(3)利用已知函数的单调性但本题图象不易作,利用YX与Y的单调性(一增一减)也难以确定,故只有用单调性定义来确定,即判断F(X2)F(X1)的正负解首先确定定义域X|X0,在(,0)和(0,)两个区间上分别讨论任取X1、X2(0,)且X1X2,则F(X2)F(X1)X2X1(X2X1)(X2X1)(1),要确定此式的正负只要确定1的正精品文档2016全新精品资料全新公文范文全程指导写作独家原创5/15负即可这样,又需要判断大于1,还是小于1由于X1、X2的任意性,考虑到要将(0,)分为(0,1)与(1,)(这是本题的关键)(1)当X1、X2(0,1)时,10,F(X2)F(X1)0,为减函数(2)当X1、X2(1,)时,10,F(X2)F(X1)0,为增函数同理可求(3)当X1、X2(1,0)时,为减函数;(4)当X1、X2(,1)时,为增函数评述解答本题易出现以下错误结论F(X)在(1,0)(0,1)上是减函数,在(,1)(1,)上是增函数,或说F(X)在(,0)(0,)上是单调函数排除障碍的关键是要正确理解函数的单调性概念函数的单调性是对某个区间而言的,而不是两个或两个以上不相交区间的并深化拓展求函数YX(A0)的单调区间提示函数定义域X0,可先考虑在(0,)上函数的单调性,再根据奇偶性与单调性的关系得到在(,0)上的单调性答案在(,(,)上是增函数,在(0,精品文档2016全新精品资料全新公文范文全程指导写作独家原创6/15(,0)上是减函数【例4】定义在R上的函数YF(X),F(0)0,当X0时,F(X)1,且对任意的A、BR,有F(AB)F(A)F(B)(1)求证F(0)1;(2)求证对任意的XR,恒有F(X)0;(3)求证F(X)是R上的增函数;(4)若F(X)F(2XX2)1,求X的取值范围(1)证明令AB0,则F(0)F2(0)又F(0)0,F(0)1(2)证明当X0时,X0,F(0)F(X)F(X)1F(X)0又X0时F(X)10,XR时,恒有F(X)0(3)证明设X1X2,则X2X10F(X2)F(X2X1X1)F(X2X1)F(X1)X2X10,F(X2X1)1又F(X1)0,F(X2X1)F(X1)F(X1)F(X2)F(X1)F(X)是R上的增函数(4)解由F(X)F(2XX2)1,F(0)1得F(3XX2)F(0)又F(X)是R上的增函数,3XX200X3精品文档2016全新精品资料全新公文范文全程指导写作独家原创7/15评述解本题的关键是灵活应用题目条件,尤其是(3)中“F(X2)F(X2X1)X1”是证明单调性的关键,这里体现了向条件化归的策略闯关训练夯实基础1(2004年湖北,理7)函数F(X)AXLOGA(X1)在0,1上的最大值与最小值的和为A,则A的值为ABC2D4解析F(X)是0,1上的增函数或减函数,故F(0)F(1)A,即1ALOGA2ALOGA21,2A1A答案B2设函数F(X)LOGA|X|在(,0)上单调递增,则F(A1)与F(2)的大小关系是AF(A1)F(2)BF(A1)F(2)CF(A1)F(2)D不能确定解析由F(X)且F(X)在(,0)上单调递增,易得0A11A12又F(X)是偶函数,F(X)在(0,)上单调递减F(A1)F(2)答案B3函数YLOGA(2AX)在0,1上是减函数,则A的取值范围是A(0,1)B(0,2)C(1,2)D(2,)精品文档2016全新精品资料全新公文范文全程指导写作独家原创8/15解析题中隐含A0,2AX在0,1上是减函数YLOGAU应为增函数,且U2AX在0,1上应恒大于零1A2答案C4(文)如果函数F(X)X22(A1)X2在区间(,4上是减函数,那么实数A的取值范围是_解析对称轴X1A,由1A4,得A3答案A3(理)(2003年湖北省荆州市高中毕业班质量检查题)函数YF(X)的图象与Y2X的图象关于直线YX对称,则函数YF(4XX2)的递增区间是_解析先求Y2X的反函数,为YLOG2X,F(X)LOG2X,F(4XX2)LOG2(4XX2)令U4XX2,则U0,即4XX20X(0,4)又UX24X的对称轴为X2,且对数的底为21,YF(4XX2)的递增区间为(0,2)答案(0,2)5讨论函数F(X)(A)在(2,)上的单调性解设X1、X2为区间(2,)上的任意两个值,且X1X2,则F(X1)F(X2)精品文档2016全新精品资料全新公文范文全程指导写作独家原创9/15X1(2,),X2(2,)且X1X2,X2X10,X120,X220当12A0,即A时,F(X1)F(X2),该函数为减函数;当12A0,即A时,F(X1)F(X2),该函数为增函数培养能力6(2003年重庆市高三毕业班诊断性试题)已知函数F(X)M(X)的图象与函数H(X)(X)2的图象关于点A(0,1)对称(1)求M的值;(2)若G(X)F(X)在区间(0,2上为减函数,求实数A的取值范围解(1)设P(X,Y)为函数H(X)图象上一点,点P关于A的对称点为Q(X,Y),则有XX,且Y2Y点Q(X,Y)在F(X)M(X)上,YM(X)将X、Y代入,得2YM(X)整理,得YM(X)2M(2)G(X)(X),设X1、X2(0,2,且X1X2,精品文档2016全新精品资料全新公文范文全程指导写作独家原创10/15则G(X1)G(X2)(X1X2)0对一切X1、X2(0,2恒成立X1X2(1A)0对一切X1、X2(0,2恒成立由1AX1X24,得A37(2004年春季上海)已知函数F(X)|XA|,G(X)X22AX1(A为正常数),且函数F(X)与G(X)的图象在Y轴上的截距相等(1)求A的值;(2)求函数F(X)G(X)的单调递增区间;(3)若N为正整数,证明10F(N)()G(N)4(1)解由题意,F(0)G(0),|A|1,又A0,所以A1(2)解F(X)G(X)|X1|X22X1当X1时,F(X)G(X)X23X,它在1,)上单调递增;当X1时,F(X)G(X)X2X2,它在,1)上单调递增(3)证明设CN10F(N)()G(N),考查数列CN的变化规律解不等式1,由CN0,上式化为10()2N31,解得N37因NN,得N4,于是C1C2C3C4而C4C5C6,精品文档2016全新精品资料全新公文范文全程指导写作独家原创11/15所以10F(N)()G(N)10F(4)()G(4)103()254探究创新8(2005年北京西城区模拟题)设AR,函数F(X)(AX2A1),其中E是自然对数的底数(1)判断F(X)在R上的单调性;(2)当1A0时,求F(X)在1,2上的最小值解(1)由已知(X)EX(AX2A1)EX2AXEX(AX22AXA1)因为EX0,以下讨论函数G(X)AX22AXA1值的情况当A0时,G(X)10,即(X)0,所以F(X)在R上是减函数当A0时,G(X)0的判别式4A24(A2A)4A0,所以G(X)0,即(X)0,所以F(X)在R上是减函数当A0时,G(X)0有两个根X1,2,并且,所以在区间(,)上,G(X)0,即(X)0,F(X)在此区间上是增函数;在区间(,)上,G(X)0,即(X)0,F(X)在此区间上是减函数精品文档2016全新精品资料全新公文范文全程指导写作独家原创12/15在区间(,)上,G(X)0,即(X)0,F(X)在此区间上是增函数综上,当A0时,F(X)在R上是减函数;当A0时,F(X)在(,)上单调递增,在(,)上单调递减,在(,)上单调递增(2)当1A0时,11,12,所以在区间1,2上,函数F(X)单调递减所以函数F(X)在区间1,2上的最小值为F(2)评述函数的最值和函数的单调性有紧密联系判断较复杂函数的单调性,利用导函数的符号是基本方法思悟小结1函数的单调性是对于函数定义域内的某个子区间而言的有些函数在整个定义域内是单调的,如一次函数;而有些函数在定义域内的部分区间上是增函数而在另一部分区间上可能是减函数,如二次函数;还有的函数是非单调的,如Y2函数单调性定义中的X1、X2有三个特征一是同属一个单调区间;二是任意性,即X1、X2是给定区间上的任意两个值,“任意”二字绝不能丢掉,更不可随意以两个特殊值替换;三是有大小,通常规定X1X2三者缺一不可3在解决与函数单调性有关的问题时,通常有定义法、图象法、复合函数判断法,但最基本的方法是定义法,几乎精品文档2016全新精品资料全新公文范文全程指导写作独家原创13/15所有的与单调性有关的问题都可用定义法来解决4讨论函数的单调性必须在定义域内进行教师下载中心教学点睛1本节的重点是函数单调性的有关概念,难点是利用概念证明或判断函数的单调性复习本节时,老师最好引导学生总结出证明函数单调性的一般步骤1设值;2作差;3变形;4定号;5结论2教学过程中应要求学生准确理解、把握单调性定义中“任意”的含意,函数单调性的重要作用在于化归,要重视运用函数的单调性将问题化归转化,培养化归意识3讨论复合函数单调性的根据设YF(U),UG(X),XA,B,UM,N都是单调函数,则YFG(X)在A,B上也是单调函数(1)若YF(U)是M,N上的增函数,则YFG(X)与UG(X)的增减性相同;(2)若YF(U)是M,N上的减函数,则YFG(X)的增减性与UG(X)的增减性相反拓展题例【例1】设函数F(X)(AB0),求F(X)的单调区间,并证明F(X)在其单调区间上的单调性解函数F(X)的定义域为(,B)精品文档2016全新精品资料全新公文范文全程指导写作独家原创14/15(B,),任取X1、X2(,B)且X1X2,则F(X1)F(X2)AB0,X2X10,(X1B)(X2B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论