




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档2016全新精品资料全新公文范文全程指导写作独家原创1/122012届高考理科数学数列与不等式复习教案2012届高考数学二轮复习专题三数列与不等式【重点知识回顾】1数列在高考中,一般设计一个客观题和一个解答题,主要考查数列和不等式部分的基本知识,对基本运算能力要求较高,解答题常常综合考查函数、方程、不等式等知识难度较大,尤其是数列、函数和不等式的综合考题,又加入了逻辑推理能力的考查,成为了近几年数列考题的新热点2数列与不等式部分的重点为等差、等比数列的概念、性质、通项公式、前项和;不等式的性质、解法和两个重要不等式的应用;该部分重点考查运算能力和逻辑推理能力,考查函数与方程思想、化归于转化思想及分类讨论思想【典型例题】1等差数列与等比数列的综合等差数列与等比数列都是高考命题的重点知识,考题经常将它们综合在一起综合考查等差数列和等比数列的概念、性质、通项公式、求和公式等基础知识和基本性质的灵活应用,对基本的运算要求比较高例1设是公差不为0的等差数列,且成等比数列,则的前精品文档2016全新精品资料全新公文范文全程指导写作独家原创2/12项和()ABCD答案A解析设数列的公差为,则根据题意得,解得或(舍去),所以数列的前项和例2等比数列的前N项和为,且4,2,成等差数列若1,则()(A)7(B)8(3)15(4)16解析4,2,成等差数列,即,因此选C点评该类题目综合考查了等差数列和等比数列的概念、通项公式和等比数列的求和公式等,基础性较强,综合程度较小,要求具有较熟练的运算能力2函数与不等式综合不等式与函数有着密切的联系,其中线性规划求目标函数的最值是近几年高考的热点问题之一,经常以选择题或填空题出现有不少关于最值方面的问题,通常用二次函数的配方法求最值或用均值不等式求最值,考题经常以与不等式有关的实际应用问题出现在应用不等式解决实际问题时,要注意以下四点理解题意,设变量设变量时一般把要求最值的变量定为自变量;精品文档2016全新精品资料全新公文范文全程指导写作独家原创3/12建立相应的函数关系式,把实际问题抽象为函数的最值问题;在定义域内,求出函数的最值;正确写出答案例设X,Y满足约束条件,若目标函数ZAXBY(A0,B0)的值是最大值为12,则的最小值为()ABCD4答案A解析不等式表示的平面区域如图所示阴影部分,当直线AXBYZ(A0,B0)过直线XY20与直线3XY60的交点(4,6)时,目标函数ZAXBY(A0,B0)取得最大12,即4A6B12,即2A3B6,而,故选A点评本题综合地考查了线性规划问题和由基本不等式求函数的最值问题要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2A3B6,求的最小值常用乘积进而用基本不等式解答例4本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规精品文档2016全新精品资料全新公文范文全程指导写作独家原创4/12定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为03万元和02万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是万元答案70解析设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得目标函数为二元一次不等式组等价于作出二元一次不等式组所表示的平面区域,即可行域如图作直线,即平移直线,从图中可知,当直线过点时,目标函数取得最大值联立解得点的坐标为(元)点评本题是线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,找出线性约束条件,写出所研究的目标函数,通过数形结合解答问题用线性规划的方法解决实际问题能提高学生分析问题、解决问题的能力,随着课改的深入,这类试题应该是高考的热点题型之一例5设为实数,函数精品文档2016全新精品资料全新公文范文全程指导写作独家原创5/121若,求的取值范围;2求的最小值;3设函数,直接写出不需给出演算步骤不等式的解集解析(1)若,则;(2)当时,当时,综上;(3)时,得,当时,;当时,0,得;讨论得当时,解集为;当时,解集为;当时,解集为点评本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力3函数与数列的综合高考试题中经常将函数与数列综合在一起,设计综合性较强的解答题,考查数列的概念、性质、通项及求和公式等主干知识和分析问题、解决问题的逻辑推理能力例6知函数精品文档2016全新精品资料全新公文范文全程指导写作独家原创6/12()设是正数组成的数列,前N项和为,其中若点NN在函数的图象上,求证点也在的图象上;()求函数在区间内的极值解析证明因为所以,由点在函数的图象上,,又,所以,是的等差数列,所以,又因为,所以,故点也在函数的图象上解,令得当X变化时,的变化情况如下表X,222,0FX0FX极大值注意到,从而当,此时无极小值;当的极小值为,此时无极大值;当既无极大值又无极小值点评本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力4数列与不等式、简易逻辑等的综合精品文档2016全新精品资料全新公文范文全程指导写作独家原创7/12数列是培养推理论证能力的极好载体,将数列的知识与推理证明的方法交织在一起进行考查,是新课程高考中的一个亮点,常常荣归纳、猜想、数学归纳法、分类讨论、等价转化等数学思想和方法于一体,对能力的要求较高例7设若是与的等比中项,则的最小值为()A8B4C1D答案B解析因为,所以,当且仅当即时“”成立,故选择B点评本小题考查指数式和对数式的互化,以及均值不等式求最值的运用,考查了变通能力例8设数列满足为实数()证明对任意成立的充分必要条件是;()设,证明;()设,证明解析1必要性,又,即充分性设,对用数学归纳法证明,当时,假设,则,且,由数学归纳法知对所有成立2设,当时,结论成立精品文档2016全新精品资料全新公文范文全程指导写作独家原创8/12当时,,由(1)知,所以且,3设,当时,结论成立,当时,由(2)知,点评该题综合考查了等比数列的求和、不等式的性质的应用、充分必要条件和数学归纳法等,具有较高的难度,对逻辑推理能力的考查要求较高数列与概率的综合数列与概率的综合考查,虽然不是经常但很有新意,这种命题也体现了在知识交汇处命题的指导思想例9将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为()解析一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类(1)公差为0的有6个;(2)公差为1或1的有8个;(3)公差为2或2的有4个,共有18个,成等差数列的精品文档2016全新精品资料全新公文范文全程指导写作独家原创9/12概率为,选B点评本题是以数列和概率的背景出现,题型新颖而别开生面,有采取分类讨论,分类时要做到不遗漏,不重复【模拟演练】1公差不为零的等差数列的前项和为若是的等比中项,则等于A18B24C60D902等差数列AN和BN的前N项和分别用SN和TN表示,若,则的值为ABCD3已知函数,则不等式的解集是()ABCD4已知X0,Y0,X,A,B,Y成等差数列,X,C,D,Y成等比数列,则AB2CD的最小值是_5设数列的前项和为,点均在函数的图象上则数列的通项公式为6命题实数满足,其中,命题实数满足或,且是的必要不充分条件,求的取值范围7已知二次函数的二次项系数为A,且不等式的解集为(1,3)精品文档2016全新精品资料全新公文范文全程指导写作独家原创10/12(L)若方程有两个相等的根,求的解析式;(2)若的最大值为正数,求A的取值范围8围建一个面积为360M2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2M的进出口,如图所示,已知旧墙的维修费用为45元/M,新墙的造价为180元/M,设利用的旧墙的长度为X单位元()将Y表示为X的函数()试确定X,使修建此矩形场地围墙的总费用最小,并求出最小总费用【参考答案】1答案C解析由得得,再由得则,所以,故选C2答案A解析;3答案C解析依题意得或所以或解得,故选C4答案4精品文档2016全新精品资料全新公文范文全程指导写作独家原创11/12解析AB2CDXY2XY2XY2XY45答案解析由题意得,即当N2时,当N1时,211615所以6解析设,因为是的必要不充分条件,所以,且推不出而,所以,则或即或7解析(1)因为的解集为(1,3),所以且因而(1)由方程得(2)因为方程(2)有两个相等的根所以,即解得(舍去)或,将代入(1)得的解析式为,(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转运老人协议书范本
- 运营服务类合同协议
- 迎合作协议书范本
- 水事纠纷协议书
- 沂蒙离婚协议书
- 更夫免责协议书
- 劳务派遣员工劳动合同书
- 奶茶店员工入职合同
- 残联捐赠协议书
- 车辆购买合同协议书模板
- UL2595标准中文版-2015电池驱动设备的要求中文版
- 初二英语语法填空浙江版单选题100道及答案解析
- DB21T 3508-2021 旅游景区木栈道设置与维护规范
- 扁桃体癌护理查房
- 医疗质量及医疗安全
- 烧伤治疗和护理
- 2024年广西职业院校技能大赛高职组《区块链技术应用》赛项样卷
- 医疗技术销售技巧
- 使用错误评估报告(可用性工程)模版
- 2024专利代理人考试真题及答案
- 2024年高考全国甲卷英语试卷(含答案)
评论
0/150
提交评论