




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题讲座五 动能定理及应用一. 教学内容:动能定理专题训练二. 知识重点:1. 能够推导并理解动能定理知道动能定理的适用范围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和”的含义。3. 确立运用动能定理分析解决具体问题的步骤与方法三. 知识难点:1. 应用动能过程中,合功的值以及与过程相对应的动能值的确定2. 总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。3. 动能定理的实际应用,通过动能定理进一步加深功与能关系的理解,让学生对功、能关系有更全面、深刻的认识。(一)动能定理1. 动能定理的推导:例1:一个物体在平面上加速运动,请用牛顿第二定律推导动能定理2. 动能定理的内容: 。3. 动能定理表达式: 4. 运用动能定理解题是处理力学问题的一条重要而有效的途径。我们在运用动能定理解题时,需要注意如下几点:(1)因动能定理涉及到做功的所有力,所以它仍需要对物体作全面的受力分析;(2)它还需要选择某一运动过程,明确始末两个状态;(3)它只考虑在这一过程中所有外力做的总功与始末两状态动能变化的关系,而不必考虑其运动学、动力学的细节,也不考虑势能等其它形式的能量(二)动能定理的解题步骤:1. 恰当选取研究对象,明确它的运动过程2. 分析研究对象的受力情况和各个力做功情况:受哪些力?每个力是否做功?做正功还是负功?做多少功?然后求各个力做功的代数和。3. 明确物体在过程始末状态的动能Ek1和Ek2。4. 列出动能定理的方程,以及其它必要的解题方程进行求解。(三)典型例题:1. 利用动能定理求解力(变力)做功:例1:质量过为4kg的铅球,从离沙坑1.8m的高处自由落下。铅球落进沙坑后陷入0.2m深而停止运动,求沙坑对铅球的平均阻力(g取10ms2)。(2)结合隔离法,运用动能定理例2:总质量为M的列车,沿平直轨道匀速前进,质量为m的末节车厢中途脱钩,当司机发觉时,机车已行驶L距离,于是他立即关闭油门,撤去牵引力。设车运动的阻力与重力成正比,机车的牵引力为定值,当列车的两部分都停止运动时,它们的距离是多少?(3)结合运动分解,运用动能定理例3:如图所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v,绳与水平面夹角为。问在这个过程中,人对重物做了多少功?(4)动能定理与牛顿运动定律的比较例4:如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s。求小滑块与接触面间的动摩擦因数(设滑块与各部分的动摩擦因数相同)。(5)用动能定理求解圆周运动中变力做功求解某个变力所做的功,可以利用动能定理,通过动能改变量和其余力做功情况来确定。例5:如图所示,把一小球系在轻绳的一端,轻绳的另一端穿过光滑木板的小孔,且受到竖直向下的拉力作用。当拉力为F时,小球做匀速圆周运动的轨道半径为R。当拉力逐渐增至4F时,小球匀速圆周运动的轨道半径为R2。在此过程中,拉力对小球做了多少功?2. 利用动能定理求解多过程问题:例6:质量m1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t2.0s停在B点,已知A、B两点的距离s5.0m,物块与水平面间的动摩擦因数0.20,求恒力F多大?(g10m/s2)例7:如图所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面的摩擦系数为,开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。3. 活用动能定理巧求物体加速度。例8:如图所示,两个物体的质量分别为m1、m2,m1m2/2,滑轮和细线的质量不计,细线不可伸长,不计滑轮转轴处的摩擦,开始用手托着m1,求放手后两个物体的加速度分别是多大?4. 活用动能定理巧求解变质量问题:例9:如图长为l的均质链条,部分置于水平面上,另一部分自然下垂,已知链条与水平面间静摩擦系数为0,滑动摩擦系数为。求:(1)满足什么条件时,链条将开始滑动?(2)若下垂部分长度为b时,链条自静止开始滑动,当链条末端刚刚滑离桌面时,其速度等于多少?5. 活用动能定理巧求机械能守恒问题。例10:如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R5.0m,轨道在C处与水平地面相切。在C处放一小物块,给它一水平向左的初速度v05m/s,结果它沿CBA运动,通过A点,最后落在水平面上的D点,求C、D间的距离s。取重力加速度g10m/s2。6. 利用动能定理解决能量守恒问题:例11:如图,在水平恒力F作用下,物体沿光滑曲面从高为 h 1的 A处运动到高为 h 2 的B处,若在A处的速度为v A ,B处速度为v B ,则AB的水平距离为多大?7. 利用动能定理求解机车启动或功率问题:例12:输出功率保持10kW的起重机起吊500kg的重物,当货物升高到2m时速度达到最大值,此最大速度是多少?此过程用了多长时间?(g取10ms2)例13:某地强风的风速是20m/s,空气的密度是1.3kg/m3。一风力发电机的有效受风面积为S20m2,如果风通过风力发电机后风速减为12m/s,且该风力发电机的效率为80%,则该风力发电机的电功率多大? 8. 动能定理的图象问题:例14:质量m1kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4m时,拉力F停止作用,运动到位移是8m时物体停止,运动过程中S的图线如图所示。求:(1)物体的初速度多大?(2)物体和平面间的摩擦系数为多大?(g取)(3)拉力F的大小。【模拟试题】1. 一人用力踢质量为1kg的皮球,使球由静止以10m/s的速度飞出,假定人踢球的瞬间对球的平均作用力是200N,球在水平方向运动了20m停止,那么人对球所做的功为( )A. 500JB. 50JC. 4000JD. 无法确定2. 一木块静置于光滑水平面上,一颗子弹沿水平方向射入木块中,当子弹进入木块深度达到最大值2.0cm时,木块沿水平恰好移动了1.0cm在上述过程中损失的机械能与子弹损失的动能之比为( )A. 23B. 13C. 12D. 323. 将A、B两物体竖直上抛,不计空气阻力,已知mAmB,它们具有相同的初动能,抛出时间t后,两物体都在上升,此时比较它们的动能( )A. 动能较大的是AB. 动能较大的是B C. 动能一样大D. 无法判定4. 如图所示,质量为m的物块与转台之间的动摩擦因数为u(最大静摩擦力近似于滑动摩擦力),物块与转轴相距R,物块随转台由静止开始缓慢加速转动,当转速增加到某值时,物块即将在转台上滑动,则在该过程中,摩擦力对物体做的功为( )A. 0B. 2C. 2 D. /25. 质量为1kg的物体以某一初速度在水平面上开始滑行,其动能随位移变化的图象如图所示,则物体在水平面上滑行的时间为( )A. 2.5sB. 4sC. 10sD. 25s6. 在平直公路上,汽车由静止开始做匀加速运动,当速度达到vm后立即关闭发动机直到停止,vt图像如图所示,设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功为W1,克服摩擦力做功为W2,则( ) A. F:f 3:1B. F:f 4:1 C. W1:W2 1:1D. W1:W2 1:37. 如图所示,摆球质量为m,摆线长为l,若将小球拉至摆线与水平方向夹30角的P点处,然后自由释放,试计算摆球到达最低点时的速度和摆线中的张力大小。8. 一根轻直杆,可绕O点在竖直平面内转动,杆的两端分别固定质量为m1和m2的小球(m1m2),它们离O点的距离分别为L1和L2(L1L2),使杆从水平位置自静止转动,求m1到最低点时的角速度(不计空气阻力和摩擦阻力)9. 一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的A端由静止开始运动,木块和管壁间动摩擦因数 0.5,管两臂长AB BC L 2m,顶端B处为一小段光滑圆弧,两臂与水平面成 37角,如图所示。求:(1)木块从A到达B时的速率;(2)木块从开始运动到最终静止经过的路程。参考解答(一)动能定理1. 动能定理的推导:例1:一个物体在平面上加速运动,请用牛顿第二定律推导动能定理解:由图可知WFS由,知,代入式得又Fma(二)动能定理的解题步骤:(三)典型例题:1. 利用动能定理求解力(变力)做功:如果所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能的增量也比较容易计算时,巧用动能定理就可以灵活求出这个变力所做的功。(1)灵活选取适当过程,运用动能定理例1:质量过为4kg的铅球,从离沙坑1.8m的高处自由落下。铅球落进沙坑后陷入0.2m深而停止运动,求沙坑对铅球的平均阻力(g取10ms2)。解析:本题铅球在前一段做自由落体运动,后一段做匀减速运动。对前一段可用机械能守恒求解,后一段可用动能定理求解。但如果我们把从开始下落到最终停止看成一个过程,运用动能定理列式,将很快得到结果:由WEk 可得:mg(h+s)fs000f(h+s)mg/s(1.8+0.2)4100.2400N此题我们用动能定理列式时,把两段过程处理成一个过程,求解就便捷得多了(2)结合隔离法,运用动能定理例2:总质量为M的列车,沿平直轨道匀速前进,质量为m的末节车厢中途脱钩,当司机发觉时,机车已行驶L距离,于是他立即关闭油门,撤去牵引力。设车运动的阻力与重力成正比,机车的牵引力为定值,当列车的两部分都停止运动时,它们的距离是多少?解析:此题牵涉机车和车厢这两个研究对象,它们又分别经历着不同的变速运动过程如果从动力学、运动学角度去分析求解将非常麻烦我们运用隔离法针对每一个研究对象运动的全过程分析其受力,画出其运动的示意图如图所示,并分别列出它们动能定理的表达式:未脱钩时,整列车匀速前进,有:FKMg (1)脱钩后,两车分别做加速、减速运动对机车:KLK(Mm)gs10(Mm)v02/2 (2)对车厢:Kmgs20mv02/2 (3)将(1)代入(2)后再将等式两边分别与(3)相除,化简,得:ss1s2ML/(Mm)(3)结合运动分解,运用动能定理例3:如图所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v,绳与水平面夹角为。问在这个过程中,人对重物做了多少功?解析:人移动时对绳的拉力不是恒力,重物不是做匀速运动也不是做匀变速运动,故无法用WFscos求对重物做的功,需从动能定理的角度来分析求解当绳下端由A点移到B点时,重物上升的高度为: 重力做功的数值为:当绳在B点实际水平速度为v时,v可以分解为沿绳斜向下的分速度v1和绕定滑轮逆时针转动的分速度v2,其中沿绳斜向下的分速度v1和重物上升速度的大小是一致的,从图中可看出:v1vcos以重物为研究对象,根据动能定理得:(4)动能定理与牛顿运动定律的比较用牛顿运动定律解题涉及到的有关物理量比较多,如F、a、m、v、s、t等对运动过程的细节变化也要掌握得比较充分,才可列式求解。而运用动能定理解题涉及到的物理量只有F、s、m、v。它对运动过程的细节及其变化也不要求了解,只需考虑始末两状态的动能和外力做的功,它还可把不同运动过程合并成一个全过程来处理,使解题过程简便。当然,如果题目中要求了解加速度a、运动时间t等细节,那就需要从动力学、运动学的角度去分析,不能直接求解了。例4:如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s。求小滑块与接触面间的动摩擦因数(设滑块与各部分的动摩擦因数相同)。解析:滑块从A点滑到C点,只有重力和摩擦力做功,设滑块质量为m,动摩擦因数为,斜面倾角为,斜面底边长s1,水平部分长s2,由动能定理得: 得h/s由此题可见,用动能定理求解,回避了加速度a,不必考虑细节,解题过程简单很多。(5)用动能定理求解圆周运动中变力做功求解某个变力所做的功,可以利用动能定理,通过动能改变量和其余力做功情况来确定。例5:如图所示,把一小球系在轻绳的一端,轻绳的另一端穿过光滑木板的小孔,且受到竖直向下的拉力作用。当拉力为F时,小球做匀速圆周运动的轨道半径为R。当拉力逐渐增至4F时,小球匀速圆周运动的轨道半径为R2。在此过程中,拉力对小球做了多少功?解析:此题中的F是一个大小变化的力,故我们不能直接用功的公式求解拉力的功。根据Fmv2R,我们可分别求得前、后两个状态小球的动能,这两状态动能之差就是拉力所做的功。由Fmv12R 4Fmv220.5R 得WFmv222mv122FR/22. 利用动能定理求解多过程问题:例6:质量m1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t2.0s停在B点,已知A、B两点的距离s5.0m,物块与水平面间的动摩擦因数0.20,求恒力F多大?(g10m/s2)解析:设撤去力F前、后物体的位移分别为s1、s2,物块受到的滑动摩擦力撤去力F后物块的加速度大小为。最后2秒内,物体的位移为故力F作用的位移对物块运动的全过程应用动能定理:。例7:如图所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面的摩擦系数为,开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。解析:以滑块为研究对象,滑块在整个运动过程中克服摩擦阻力做功消耗了滑块的初始动能。设碰撞n次后动能变为EK,依动能定理有:则此时的动能EK不足以使滑块再次碰撞所以0EKmgL将代入解得:+故n为上的整数。点评:滑块与盒子两壁多次作用,往复在盒子底部滑动,把动能消耗掉,实际该过程,摩擦力的方向会变来变去,但不管怎么变,摩擦力总是做负功,此题要注意摩擦力做功的大小是摩擦力乘以物体通过的路程而不是位移。点评:本题应用牛顿第二定律也可求解,但比较繁琐,应用动能定理求解则简洁得多,求解时一定要注意,两个力作用的位移是不同的。3. 活用动能定理巧求物体加速度。例8:如图所示,两个物体的质量分别为m1、m2,m1m2/2,滑轮和细线的质量不计,细线不可伸长,不计滑轮转轴处的摩擦,开始用手托着m1,求放手后两个物体的加速度分别是多大?解析:把m1、m2作为一个系统,设m1下降h时,则m2上升h/2,m1的下落速度为v, m2的上升速度为v/2,应用动能定理得因m1匀加速下落,由2ah得m1下落的加速度点评:用动能定理求物体加速度的方法的实质是,把求物体加速度的问题利用动能定理转化为求速度和位移的关系式,这种方式对于多个物体组成的,多个物体间具有相互作用,且各个物体均做直线运动的一些较复杂的物体,显得十分复杂。4. 活用动能定理巧求解变质量问题:例9:如图长为l的均质链条,部分置于水平面上,另一部分自然下垂,已知链条与水平面间静摩擦系数为0,滑动摩擦系数为。求:(1)满足什么条件时,链条将开始滑动?(2)若下垂部分长度为b时,链条自静止开始滑动,当链条末端刚刚滑离桌面时,其速度等于多少?解析:(1)以链条的水平部分为研究对象,设链条每单位长度的质量为,沿铅垂向下取Oy轴,设链条下落长度yb0时,处于临界状态当yb0时,拉力大于最大静摩擦力时,链条将开始滑动。(2)以整个链条为研究对象,链条在运动过程中重力的功等于重力势能的减少量(可选桌面为零势能面)根据动能定理有: 点评:对于变质量问题,高中知识一般不容易讨论,但如果能整体从能量的观点用动能定理解题,有时往往比较简单。5. 活用动能定理巧求机械能守恒问题。例10:如图所示,一固定在竖直平面内的光滑的半圆形轨道ABC,其半径R5.0m,轨道在C处与水平地面相切。在C处放一小物块,给它一水平向左的初速度v05m/s,结果它沿CBA运动,通过A点,最后落在水平面上的D点,求C、D间的距离s。取重力加速度g10m/s2。解析:设小物体的质量为,经处时的速度为,由到经历的时间为,由动能定理可得: 由式并代入数据得1 m点评:应用机械能守恒来解该题一要分析系统是否符合机械能守恒条件,二是恰当选取参考平面,使解题过程较为复杂,而无论物体或系统机械能守恒与否,动能定理都适用,并不用选取参考平面,显然运用动能定理解析机械能守恒问题,反而干净利索。6. 利用动能定理解决能量守恒问题:例11:如图,在水平恒力F作用下,物体沿光滑曲面从高为 h 1的 A处运动到高为 h 2 的B处,若在A处的速度为v A ,B处速度为v B ,则AB的水平距离为多大?解析:A到B的过程中,物体受水平恒力F,支持力N 和重力 mg 的作用。三个力做功分别为 Fs,0 和 mg (h2 h 1 ) ,所以动能定理写为: 7. 利用动能定理求解机车启动或功率问题:例12:输出功率保持10kW的起重机起吊500kg的重物,当货物升高到2m时速度达到最大值,此最大速度是多少?此过程用了多长时间?(g取10ms2)解析:起重机以恒定的功率吊起重物的过程是加速度不断减小、速度不断增大的过程.当货物的速度达到最大时,起重机的牵引力与货物的重力相平衡,即:Fmg5103N,vmPF2ms求解这一段运动时间不能用匀变速运动的公式,我们可以货物为研究对象运用动能定理求解:PtWGmv2/2, t(mv2/2+mgh)/P1.1s例13:某地强风的风速是20m/s,空气的密度是1.3kg/m3。一风力发电机的有效受风面积为S20m2,如果风通过风力发电机后风速减为12m/s,且该风力发电机的效率为80%,则该风力发电机的电功率多大?解析:风力发电是将风的动能转化为电能,讨论时间t内的这种转化,这段时间内通过风力发电机的空气是一个以S为底、v0t为高的横放的空气柱,其质量为mSv0t,它通过风力发电机所减少的动能用以发电,设电功率为P,则 代入数据解得 P53kW8. 动能定理的图象问题:例14:质量m1kg的物体,在水平拉力F的作用下,沿粗糙水平面运动,经过位移4m时,拉力F停止作用,运动到位移是8m时物体停止,运动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 螺蛳粉开业营销策划方案
- 无人机AI多任务并行处理能力研究分析报告
- 初步设计咨询方案
- 互联网春节营销计划方案
- 云端大联欢活动方案策划
- 金华无尘室施工方案设计
- 初二道法考试题库及答案
- 深圳肠粉店营销方案设计
- 防护网水下施工方案
- 桥梁混凝土结构防腐施工方案
- 市国资公司信访维稳工作应急预案
- SMT印刷工艺培训资料
- 2024年个人之间清账协议书模板
- 给水管道停水碰口专项施工方案
- 2024年人教版九年级英语单词默写单(微调版)
- 2024年东南亚解热镇痛类原料药市场深度研究及预测报告
- 中建企业定额2023版
- 《计算机网络实验教程》全套教学课件
- 间隔记录数据表
- 《民航客舱设备操作与管理》课件-项目四 飞机舱门及撤离滑梯
- DB32T4064-2021江苏省城镇燃气安全检查标准
评论
0/150
提交评论