




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17讲三角形与全等三角形,考点知识精讲,中考典例精析,考点训练,举一反三,考点一三角形的概念与分类1由三条线段所围成的平面图形,叫做三角形2三角形按边可分为:三角形和三角形;按角可分为三角形、三角形和三角形,首尾顺次相接,不等边,等腰,锐角,钝角,直角,考点二三角形的性质1三角形的内角和是,三角形的外角等于与它的两个内角的和,三角形的外角大于任何一个和它不相邻的内角2三角形的两边之和第三边,两边之差第三边3三角形中的重要线段(1)角平分线:三角形的三条角平分线交于一点,这点叫做三角形的内心,它到三角形各边的距离相等(2)中线:三角形的三条中线交于一点,这点叫做三角形的重心(3)高:三角形的三条高交于一点,这点叫做三角形的垂心,180,不相邻,大于,小于,(4)三边垂直平分线:三角形的三边垂直平分线交于一点,这点叫做三角形的外心,外心到三角形三个顶点距离相等(5)中位线:三角形中位线平行于第三边且等于第三边的一半温馨提示:三角形的边、角之间的关系是三角形中重要的性质,在比较角的大小、线段的长短及求角或线段中经常用到.学习时应结合图形,做到熟练、准确地应用.三角形的角平分线、高、中线均为线段.,考点三全等三角形的概念与性质1能够完全重合的两个三角形叫做全等三角形2全等三角形的性质(1)全等三角形的、分别相等;(2)全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等,对应边,对应角,考点四全等三角形的判定1一般三角形全等的判定(1)如果两个三角形的三条边分别,那么这两个三角形全等,简记为SSS;(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简记为SAS;(3)如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等,简记为ASA;(4)如果三角形的两角及其中一角的对边分别对应相等,那么这两个三角形全等,简记为AAS.,对应相等,2直角三角形全等的判定(1)两直角边对应相等的两个直角三角形全等;(2)一边及该边所对锐角对应相等的两个直角三角形全等;(3)如果两个直角三角形的斜边及一条分别对应相等,那么这两个直角三角形全等简记为HL.3证明三角形全等的思路,直角边,(1)(2011河北)已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A2B3C5D13(2)(2010昆明)如图,在ABC中,CD是ACB的平分线,A80,ACB60,那么BDC()A80B90C100D110(3)(2010广州)在ABC中,D、E分别是边AB、AC的中点,若BC5,则DE的长是()A2.5B5C10D15,(4)(2010济宁)若一个三角形三个内角度数的比为234,那么这个三角形是()A直角三角形B锐角三角形C钝角三角形D等边三角形(5)(2011黄冈)如图,ABC的外角ACD的平分线CP与内角ABC的平分线BP交于点P,若BPC40,则CAP_.【点拨】本组题主要考查三角形的有关概念和性质,【解答】(1)B由三角形三边关系可得11x15,满足条件的正整数x为12,13,14,这样的三角形有3个(2)DACB60,CD是ACB的平分线ACD30,BDCAACD8030110.,方法总结:(1)考查三角形的边或角时,一定要注意三角形形成的条件:两边之和大于第三边,两边之差小于第三边;(2)在求三角形内角和外角时,要明确所求的角属于哪个三角形的内角和外角,要抓住题目中的等量关系;(3)审题时,要注意提炼条件,并思考条件怎样用,还要考虑所求应该怎样去求.,(2011河南)如图所示,在梯形ABCD中,ADBC,延长CB到点E,使BEAD,连接DE交AB于点M.(1)求证:AMDBME;(2)若N是CD的中点,且MN5,BE2,求BC的长【点拨】三角形的中位线平行于第三边且等于第三边的一半,方法总结:(1)判定两个三角形全等时,常用下面的思路:有两角对应相等时找夹边或任一边对应相等;有两边对应相等时找夹角或另一边对应相等.(2)结论不唯一的开放型试题,是近几年中考试题中的热点题型.主要考查对一些知识点掌握的熟练性、系统性.这类题型要注意多琢磨、多领悟.,1下列长度的三条线段能组成三角形的是()A1cm,2cm,3.5cmB4cm,5cm,9cmC5cm,8cm,15cmD6cm,8cm,9cm答案:D2如图,BDC98,C38,B23,A的度数是()A61B60C37D39答案:C,3如图,D、E分别为ABC的边AC、BC的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处,若CDE48,则APD等于()A42B48C52D58答案:B4如图,在ABC中,ACDCDB,ACD100,则B等于()A50B40C25D20答案:D,5现有2cm、4cm、5cm、8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A1个B2个C3个D4个答案:B6已知:如图,点A、B、C、D在同一条直线上,EAAD,FDAD,AEDF,ABDC.求证:ACEDBF.答案:提示:先用SAS证明EACFDB,三角形与全等三角形训练时间:60分钟分值:100分,一、选择题(每小题3分,共36分)1(2011苏州)ABC的内角和为()A180B360C540D720【解析】任意三角形内角和都是180.【答案】A,2(2010中考变式题)如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA5,则线段PB的长度为()A6B5C4D3【解析】线段垂直平分线上的点到这条线段两个端点的距离相等,PAPB5.【答案】B,3(2010中考变式题)如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA15米,OB10米,A、B间的距离不可能是()A20米B15米C10米D5米【解析】由三角形关系得5AB25.【答案】D,4(2011山西)如右图所示,AOB的两边OA、OB均为平面反光镜,AOB35,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则DEB的度数是(),A35B70C110D120【解析】CDOB,ADCAOB35.由光的反射原理知,ODEADC35,DEBODEAOB70.【答案】B,5(2010中考变式题)两根木棒的长分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒的长为偶数,那么第三根木棒的选取情况有()A3种B4种C5种D6种【解析】由三角形三边关系得2cm第三根棒长12cm.因为第三根棒长为偶数,第三根棒的取值可以是4cm、6cm、8cm和10cm共4种【答案】B,6(2012中考预测题)如图,OP平分AOB,PAOA,PBOB,垂足分别为A、B,下列结论中不一定成立的是()APAPBBPO平分APB,COAOBDAB垂直平分OP【解析】依据角平分线的性质和全等三角形的判定性质得D不一定成立【答案】D,7(2012中考预测题)如图,点P是AB上任意一点,ABCABD,还应补充一个条件,才能推出APCAPD.从下列条件中补充一个条件,不一定能推出APCAPD的是()ABCBDBACADCACBADBDCABDAB,【解析】依据A条件先证ABCABD(SAS),再推出APCAPD.依据C条件先证ABCABD(AAS),再推出APCAPD;依据D条件先证ABCABD(ASA),再推出APCAPD,而B的条件不能推出【答案】B,8(2012中考预测题)用边长为1的正方形纸板,制成一副七巧板,如图所示,将它拼成“小天鹅”图案,其中阴影部分的面积为(),【答案】C,9(2012中考预测题)如图,ACBACB,BCB30,则ACA的度数为()A20B30C35D40【解析】ACBACB,ACBACB,ACABCB30.【答案】B,10(2010中考变式题)如图,AC、BD是矩形ABCD的对角线,过点D作DEAC交BC的延长线于E,则图中与ABC全等的三角形共有()A1个B2个C3个D4个【解析】与ABC全等的有4个,分别是CDA、BAD、DCB、DEC.【答案】D,11(2011芜湖)如图所示,已知ABC中,ABC45,F是高AD和BE的交点,CD4,则线段DF的长度为()【解析】由条件可得BDFADC,故DFCD4.【答案】B,12(2011江西)如下图所示,在下列条件中,不能证明ABDACD的是()ABDDC,ABACBADBADC,BDDC,CBC,BADCADDBC,BDDC【解析】BDDC,ABAC,ADAD,满足“SSS”;ADBADC,BDDC,ADAD,满足“SAS”;BC,BADCAD,ADAD,满足“AAS”;A、B、C三个选项都能证明ABDACD,只有D项不能【答案】D,二、填空题(每小题4分,共20分)13(2011成都)如图所示,在ABC中,D、E分别是边AC、BC的中点,若DE4,则AB_.【答案】8,14(2011江西)如图所示,在ABC中,点P是ABC的内心,则PBCPCAPAB_度,【答案】90,15(2010中考变式题)如图,已知ACFE,BCDE,点A、D、B、F在一条直线上,要使ABCFDE,还需添加一个条件,这个条件可以是_【解析】答案不唯一【答案】CE(或ABFD等),16(2011海南)如图所示,在ABC中,ABAC3cm,AB的垂直平分线交AC于点N,BCN的周长是5cm,则BC的长等于_cm.【解析】由MN是线段AB的垂直平分线可得BNAN.BNNCANNCAC3,BC532(cm)【答案】2,17(2011绥化)如右图所示,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,ABDE,BFCE,请添加一个适当的条件_,使得ACDF.【解析】由已知条件可得BE,BCEF.只需再有ABDE或AD或ACBDFE都可证明ABCDEF,从而得出ACDF.【答案】ABDE或AD等,三、解答题(共44分)18.(10分)(2011德州)如图所示,ABAC,CDAB于D,BEAC于E,BE与CD相交于点O.(1)求证:ADAE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由,【答案】(1)证明:如图,在ACD与ABE中,CADBAE,ADCAEB90,ABAC,ACDABE.ADAE.(2)解:互相垂直在RtADO与RtAEO中,OAOA,ADAE,ADOAEO.DAOEAO,即OA是BAC的平分线又ABAC,OABC.,19(10分)(2011温州)如图所示,在等腰梯形ABCD中,ABCD,点M是AB的中点求证:ADMBCM.【答案】证明:如图所示,在等腰梯形ABCD中,ABCD,ADBC,AB.点M是AB的中点,MAMB.ADMBCM(SAS),20(10分)(2011扬州)已知:如图所示,锐角ABC的两条高BD、CE相交于点O,且OBOC.(1)求证:ABC是等腰三角形;(2)判断点O是否在BAC的角平分线上,并说明理由,【答案】(1)证明:BD、CE是ABC的高,BECCDB90.OBOC,OBCOCB.又BC是公共边,BECCDB(AAS)ABCACB.ABAC,即ABC是等腰三角形(2)解:点O在BAC的平分线上理由如下:BECCDB,BDCE.OBOC,ODOE.又ODAC,OEAB,点O在BAC的平分线上,21(14分)(2012中考预测题)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会影响下的税收政策试题及答案
- 掌握2025年税法考试核心内容的试题及答案
- 人工智能实际应用案例分析试题及答案
- 文学与艺术的结合试题及答案
- 普通逻辑学习的有效途径试题及答案
- Photoshop调节图像对比度试题及答案
- 拉近与考试的当代汉语试题及答案
- WPS文档主题应用试题及答案
- 灵活应对2025年税法考试试题及答案
- 全球数字营销市场趋势与2025年创新策略研究报告
- 2023年汽车设计习题库含答案
- 2023年安徽中烟阜阳卷烟厂招聘笔试参考题库附带答案详解
- 2021年教师结构化面试试题汇总
- 劳动教养心灵-劳动教育在小学《道德与法治》课程中的实践初探 论文
- 人民检察院刑事诉讼法律文书格式样本-2023修改整理
- 《硬件工程师手册(全)》
- 内部控制风险评估
- 2023届广东省六校联盟高三上学期第三次联考语文试题2
- 环境生态学试题及答案
- GB/T 9116-2010带颈平焊钢制管法兰
- GB/T 31974-2015钝化颗粒镁
评论
0/150
提交评论