




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档2016全新精品资料全新公文范文全程指导写作独家原创1/112014年八年级下册数学期末知识点复习(新版北师大版)M八年级下册数学考试知识点复习第一章证明(二)一、全等三角形的判定及性质1性质全等三角形对应相等、对应相等2判定分别相等的两个三角形全等(SSS分别相等的两个三角形全等SAS分别相等的两个三角形全等ASA相等的两个三角形全等AAS相等的两个直角三角形全等(HL)二等腰三角形1性质等腰三角形的两个底角相等(等边对等角)2判定有两个角相等的三角形是等腰三角形(等角对等边)3推论等腰三角形、互相重合(即“”)4等边三角形的性质及判定定理性质定理等边三角形的三个角都相等,并且每个角都等于;等边三角形是轴对称图形,有条对称轴精品文档2016全新精品资料全新公文范文全程指导写作独家原创2/11判定定理1有一个角是60的等腰三角形是等边三角形;2三个角都相等的三角形是等边三角形三直角三角形1勾股定理及其逆定理定理直角三角形的两条直角边的等于的平方逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是2含30的直角三角形的边的性质定理在直角三角形中,如果一个锐角等于30,那么等于的一半3直角三角形斜边上的中线等于的一半。要点诠释勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法四线段的垂直平分线1线段垂直平分线的性质及判定性质线段垂直平分线上的点到的距离相等判定到一条线段两个端点距离相等的点在这条线段的精品文档2016全新精品资料全新公文范文全程指导写作独家原创3/112三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等五角平分线1角平分线的性质及判定定理性质角平分线上的点到的距离相等;判定在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上2三角形三条角平分线的性质定理性质三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等这个点叫内心第二章一元一次不等式和一元一次不等式组一不等关系1一般地,用符号“”或“”,“”或“”连接的式子叫做2要区别方程与不等式方程表示的是的关系不等式表示的是的关系3准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语非负数大于等于000和正数不小于0非正数小于等于000和负数精品文档2016全新精品资料全新公文范文全程指导写作独家原创4/11不大于0二不等式的基本性质1掌握不等式的基本性质,并会灵活运用1不等式的两边加上或减去同一个整式,不等号的方向,即如果AB,那么ACBC,ACBC2不等式的两边都乘以或除以同一个正数,不等号的方向,即如果AB,并且C0,那么ACBC,3不等式的两边都乘以或除以同一个负数,不等号的方向,即如果AB,并且C0,那么ACBC,2比较大小A、B分别表示两个实数或整式一般地如果AB,那么AB是正数反过来,如果AB是正数,那么AB如果AB,那么AB等于0反过来,如果AB等于0,那么AB如果AB,那么AB是负数反过来,如果AB是正数,那么AB即ABAB0ABAB0ABAB0精品文档2016全新精品资料全新公文范文全程指导写作独家原创5/11由此可见,要比较两个实数的大小,只要考察它们的差就可以了三一元一次不等式组解集一元一次不等式组的解集的四种情况A、B为实数,且AB一元一次不等式解集图示叙述语言表达XB同大取大XAAXB无解第三章平移和旋转一图形的平移1概念在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。2性质(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。二图形的旋转1概念在平面内,将一个图形绕一个定点沿某个方向精品文档2016全新精品资料全新公文范文全程指导写作独家原创6/11转动一个角度,这样的图形运动叫做旋转。2性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等三中心对称1概念把一个图形绕着某一点旋转180,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。2基本性质(1)成中心对称的两个图形具有图形旋转的一切性质。(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。3中心对称图形(2)中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。图形的平移、轴对称(折叠)、中心对称(旋转)的对比精品文档2016全新精品资料全新公文范文全程指导写作独家原创7/11第四章分解因式一分解因式第四章因式分解一因式分解的定义1把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式2因式分解与整式乘法是互逆关系因式分解与整式乘法的区别和联系1整式乘法是把几个整式相乘,化为一个多项式2因式分解是把一个多项式化为几个因式相乘二提公共因式法1如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式这种分解因式的方法叫做提公因式法如三运用公式法1如果把乘法公式反过来,就可以用来把某些多项式分解因式这种分解因式的方法叫做运用公式法2主要公式1平方差公式2完全平方公式精品文档2016全新精品资料全新公文范文全程指导写作独家原创8/11第五章分式一分式1两个整数不能整除时,出现了分数类似地,当两个整式不能整除时,就出现了分式整式A除以整式B,可以表示成的形式如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零2整式和分式统称为有理式,即有3进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变4一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分二分式的乘除法1分式乘以分式,用分子的积做积的分子,分母的积做积的分母分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘即,2分式乘方,把分子、分母分别乘方精品文档2016全新精品资料全新公文范文全程指导写作独家原创9/11即逆向运用,当N为整数时,仍然有成立3分子与分母没有公因式的分式,叫做最简分式三分式的加减法1分式与分数类似,也可以通分根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分2分式的加减法分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减1同分母的分式相加减,分母不变,把分子相加减上述法则用式子表示是2异号分母的分式相加减,先通分,变为同分母的分式,然后再加减上述法则用式子表示是四分式方程1解分式方程的一般步骤去分母,在方程的两边都乘最简公分母,约去分母,化成整式方程解这个整式方程把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,精品文档2016全新精品资料全新公文范文全程指导写作独家原创10/11必须舍去2列分式方程解应用题的一般步骤审清题意设未知数根据题意找相等关系,列出分式方程解方程,并验根写出答案第6章四边形【几种特殊四边形的性质】边角对角线平行四边形矩形菱形等腰梯形【几种特殊四边形的常用判定方法】平行四边形(1)两组对边分别;(2)两组对边分别;(3)一组对边;(4)两条对角线;(5)两组对角分别。矩形(1)有三个是的四边形;(2)有一个角是的平行四精品文档2016全新精品资料全新公文范文全程指导写作独家原创11/11边形(3)两条对角线的平行四边形。菱形(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络文学IP音乐版权运营与全产业链开发研究报告
- 2025年新能源储能技术创新与应用场景研究报告
- 农民农业生产互助协议及收益分配方案
- Unit 4 Creatures Large and Small教学设计-2025-2026学年高中英语高一下册牛津上海版(试用本)
- 2025年地热能行业需求分析及创新策略研究报告
- (2025年标准)烘焙消费分红协议书
- (2025年标准)河沙运输协议书
- 合作社农产品进销存软件开发合作项目协议
- (2025年标准)合作时限协议书
- 2025年应急物流行业前景分析及投资机遇研究报告
- 2025年秋季开学第一课《翻越你的浪浪山》课件
- DB11∕T 510-2024 公共建筑节能工程施工质量验收规程
- 2023年河北省面向阿里籍高校毕业生招聘笔试参考题库附带答案详解
- LY/T 2692-2016榉树育苗技术规程
- GB/T 33982-2017分布式电源并网继电保护技术规范
- 注册会计师CPA《公司战略与风险管理》课件
- 【2020】高中英语人教版必修一词汇 词性转换
- 部编版小学六年级上册《道德与法治》全册复习课件
- GJB标准化大纲
- 钢筋混凝土排水管二级管配筋设计图册
- 同济大学复变函数复变函数与积分变换课件
评论
0/150
提交评论