分形理论在金融市场分析中的应用.ppt_第1页
分形理论在金融市场分析中的应用.ppt_第2页
分形理论在金融市场分析中的应用.ppt_第3页
分形理论在金融市场分析中的应用.ppt_第4页
分形理论在金融市场分析中的应用.ppt_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,分形理论在金融市场分析中的应用,报告人:王铁磊曹中鑫指导老师:王胜2004年12月30日,2,金融市场特点及传统分析方法分形理论Hurst指数(R-S分析)在金融市场应用结论展望,3,金融市场特点,流通性(随机)源于参与者竞争谋利稳定性价格在一定界限内波动自相似性不同时间段曲线相似不同金融市场曲线相似,4,传统金融市场分析,股票价格遵循随机游走原则BrownGauss数学表述为:其中:P股票(或汇率)价格,5,上证指数日收益率频数分布与相应的正态分布频数的对比。可以看出,与正态分布相比,它是一种尖峰、胖尾的分布。(胖尾分布符合幂律,即分形的规律),收益率分布,6,分形fractal,分形原意是不规则的、分数的、支离破碎的(物体)特征局部和整体有某种方式的自相似性非整数维数分为:,规则分形不规则分形,7,分形维数Dimension,测量单元的尺寸,规则图形的测量单元数,(分形幂律直线),8,分形维数Dimension,规则分形不规则分形盒计数法、Sandbox法、面积回转半径法、variation法、密度相关函数法,9,Hurstexponent历史,金融市场价格:时间序列分形Hurst是表征分形时间序列相关效应的统计量尼罗河水库纸牌游戏,(随机行走时间序列分形),10,Hurstexponent,Hurst是表征时间序列相关效应的统计量分形维数D=2-HH=0.5随机游走的时间序列0H0.5反持久性的时间序列0.5分形市场假说成熟市场(e.g.Dow)收益序列长相关不明显非成熟市场(e.g.)长相关显著、流动性欠缺,24,局部HurstDowindex(H=0.52),25,局部HurstEUS/USD(H=0.53),26,局部HurstHIS(H=0.54),27,结论2.1,H在整体Hurst附近下期金融市场稳定波动H显著大于整体Hurst下期金融市场有上升(下降)趋势,28,结论2.2,上一期Hurst预期下一期走势“源”:Hurst新含义回顾:尼罗河水库,29,展望,运用多重分形谱定量描述金融市

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论