




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,第十三章轴对称复习课2015学年人教版,2,生活中的轴对称,用坐标表示轴对称,归纳与整理,性质,轴对称图形,两个图形关于某条直线对称,性质,判定,等边三角形,特殊,3,专题一:轴对称,一、知识要点1.轴对称(1)轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。(2)轴对称:把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。(3)图形轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。,4,(4)轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。(5)图形对称轴的做法:要作两个图形的对称轴,只要找到这两个图形的一对对应点,然后连接它们,得到一条直线,在作出这条线段的垂直平分线,这条垂直平分线就是这两个图形的对称轴。2.线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,叫做线段的垂直平分线。(2)线段垂直平分线的性质:线段垂直平分线上的点到线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。,5,正方形、长方形、等腰三角形、等腰梯形和圆都是轴对称图形。有的轴对称图形有不止一条对称轴。,6,二、题目特点:判断轴对称图形或对称轴的条数根据轴对称图形的性质作对称轴用线段垂直平分线的性质解决计算题或进行证明说理三、解题切入点:熟练掌握轴对称图形概念、性质以及线段垂直平分线的性质是解决有关问题的关键。例1国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是()A.加拿大、韩国、乌拉圭B.加拿大、瑞典、澳大利亚C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士,加拿大韩国澳大利亚乌拉圭瑞典瑞士,C,7,例2小明照镜子的时候,发现T恤上的英文单词在镜子中呈现“”的样子,请你判断这个英文单词()ABCD例3哪一面镜子里是他的像?,A,8,例4如图,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从、B到它的距离相等?,P,N,M,9,例5如图,ABC中,BAC=120,若DE、FG分别垂直平分AB、AC,AEF的周长为10cm,求EAF的度数及BC长。,解:BAC=120B+C=60又DE垂直平分ABBE=AE,B=BAE同理AF=CF,C=CAFAE+EF+AF=BE+EF+CF=10cmEAF=BAC-BAE-CAF=120-B-C=60,10,例6如图,ABC中,AB=AC,A=50,AB的垂直平分线交AC于D,求FBC的度数。,C,B,D,解:AB=AC,A=50ABC=C=65又AC是线段AB的垂直平分线AF=FBABF=A=50从而DBC=ABC-ABD=65-50=15,F,11,专题二:轴对称变换,一、知识要点1.轴对称变换(1)有一个平面图形得到它的轴对称图形叫做轴对称变换。由轴对称变换得到的图形与原图形形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于对称轴的对称点;连接任意一对对应点的线段被对称轴垂直平分。(2)作一个平面图形的对称图形,先作一些点的对应点,再连接这些对应点,就可得到原图形的轴对称图形。对于线段、三角形、四边形等由直线、线段或射线组成的图形,只要做出原图形上的关键点的对应点,然后连接这些对应点,即可得到相应的对称图形。(3)利用轴对称变换设计图案,主要是借助平移等有关知识。,12,A,B,C,A1,B1,C1,.,.,.,A1B1C1为所求,由一个平面图形得到它的轴对称图形叫做轴对称变换,13,2.以坐标轴为对称轴作轴对称图形(1)点P(x,y)关于x轴对称的对称点为P1(x,-y)点P(x,y)关于y轴对称的对称点为P2(-x,y)(2)作一个图形关于坐标轴对称的图形,一般先作图形上关键点关于坐标轴的对称点,然后连接对称点即可。二、题型特点(1)作一个平面图形关于已知直线的对称图形(2)求已知点关于坐标轴对称的对称点的坐标(3)根据轴对称变换设计图案(4)根据轴对称变换解决实际生活中问题三、解题切入点:作一个平面图形的轴对称图形,关键是确定原图形上的关键点,只要作出这些关键点之间的对称点,然后按原图形的顺序连接即可;求一个点关于坐标轴对称点的坐标,关键是熟练掌握对称点之间的坐标特征。,14,例1如图,以直线AE为对称轴,画出该图形的另一部分。,F,H,解:作图过程如下:(1)分别作出点B、C关于直线AE的对称点F、H。(2)连结AF、FD、DH、HE,得到所求的图形。,15,A(-,-1),如图,利用关于坐标轴对称的点的坐标的特点,分别作出ABC关于X轴和y轴对称的图形。,C(-3,-2),B(-1,1),x,y,点P(a,b)关于x轴对称的点的坐标为(a,-b),点P(a,b)关于y轴对称的点的坐标为(-a,b),16,例2如图,(1)作出ABC关于y轴对称的A1B1C1,并写出A1B1C1各顶点的坐标;,(2)将ABC向右平移6个单位,作出平移后的A2B2C2,并写出A2B2C2各顶点的坐标;(3)观察A1B1C1和A2B2C2,它们是否关于某直线对称?若是,画出这条对称轴。,17,例3点M(3a-b,4)与点N(9,2a+b)关于x轴对称,求a和b。解:由于(x,y)关于x轴对称的点的坐标为(x,-y),则点M(3a-b,4)与点N(9,2a+b)关于x轴对称有3a-b=94=-(2a+b)a=1,b=-6,若M、N关于y轴对称又怎样?,18,专题三:等腰三角形,一、知识要点:1.等腰三角形(1)有两条边相等的三角形叫做等腰三角形。等腰三角形是轴对称图形。(2)性质:等腰三角形的两个底角相等等腰三角形的顶角平分线、底边的中线、底边上的高互相重合。(3)判别方法:有两条边相等(概念)等角对等边,19,2.等边三角形(1)三边都相等的三角形叫做等边三角形,其是轴对称图形,有三条对称轴。(2)性质:等边三角形的三个角都是60(3)判定:三个角都相等的三角形是等边三角形有一个角是60的等腰三角形是等边三角形有三个边都相等的三角形是等边三角形,直角三角形中30的角所对的直角边等于斜边的一半,推论,20,二、题型特点:(1)计算题,如求等腰三角形的腰长、周长、角等(2)说理题,如证明一个三角形是等腰(或等边)三角形(3)实际应用题,如根据实际问题构造等腰三角形解决问题三、解题切入点:解决和等腰三角形有关的计算问题,要把握等腰三角形的性质,注意分类思想在等腰三角形中的应用,解决证明问题主要依据等腰(或等边)三角形的性质和判定方法,有的问题还需要做恰当的辅助线。,21,例1如图7,在ABC中,已知AB=AC,BD、CE是两条角平分线,BD、CE相交于点O,OBC是等腰三角形吗?为什么?,解:OBC是等腰三角形在ABC中,AB=ACABC=ACB(等边对等角)又BD、CE是两条角平分DBC=ABD,ACB=ECB而ABC=DBC+ABDACB=ACB+ECBDBC=ECB即OBC是等腰三角形,22,例2如图,已知ABC为等边三角形,D、E、F分别在边BC、CA、AB,且DEF也是等边三角形除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的.,解:图中还有相等的线段是:AE=BF=CD,AF=BD=CE,ABC与DEF都是等边三角形,A=B=C=60,EDF=DEF=EFD=60,DE=EF=FD,又CED+AEF=120,CDE+CED=120AEF=CDE,同理,得CDE=BFD,AEFBFDCDE(AAS),AE=BF=CD,AF=BD=CE.,23,例3如图,A、B、C三点在同一直线上,分别以AB,BC为边在AC同侧作等边ABD和等边BCE,AE交BD于点,DC交BE于点,(1)求证:AE=DC,证明:ABD、BCE是等边三角形AB=DB,BE=BCABD=CBE=60又ABE=ABD+DBEDBC=CBE+DBEABE=DBC在ABD和BCE中AB=DBABE=DBCBE=BCABDBCEAE=DC,(2)求证:FG(BFG是等边三角形)(3)求证:FGAC,1,2,3,4,5,证明:由(1)得ABDBCE4=5ABD、BCE是等边三角形AB=DB,1=2=60从而有3=1=60在ABF和DBG中3=14=5AB=DBABFDBGFG,25,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年戏曲艺术与表演技巧考试试题及答案
- 2025年摄影艺术专业考试试题及答案
- 2025年物流管理岗位考试试卷及答案
- 2025年商务英语翻译考试试题及答案
- 2025年城市规划师资格考试试卷及答案
- 2025年电商运营与市场推广考试卷及答案
- 2025年公共卫生与预防医学考试题及答案
- 2025年护理学专业毕业考试试卷及答案
- 2025年酒店管理专业考试题目及答案
- 数字化在小学教育的应用
- 下肢动脉硬化闭塞症的护理查房
- 前置胎盘健康宣教
- 不同行业安全管理的特点与要求
- 医学人文素质教育的跨学科研究与创新
- 社区居民满意度调查问卷
- 医院标识工作总结共4篇
- NSCACSCS美国国家体能协会体能教练认证指南
- 异常子宫出血护理查房的课件
- 集装箱装柜数智能计算表
- 医院基建科招聘笔试题目
- 尿流动力学检查
评论
0/150
提交评论