第五章 系统的频率特性ppt课件_第1页
第五章 系统的频率特性ppt课件_第2页
第五章 系统的频率特性ppt课件_第3页
第五章 系统的频率特性ppt课件_第4页
第五章 系统的频率特性ppt课件_第5页
已阅读5页,还剩88页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机械控制理论基础,第五章系统的频率特性,系统的频率特性,5.1频率特性5.2频率特性的对数坐标图(伯德图)5.3频率特性的对数坐标图(奈奎斯特图)5.5最小相位系统的概念5.6闭环频率特性与频域性能指标5.7系统辨识,5.1频率特性,1.频率特性的概念,频率响应是指系统对正弦输入的稳态响应。,输出与输入的正弦幅值之比为,输出与输入的正弦相位差为,式中:是在系统传递函数中令得来,称为系统的频率特性,和分别表示频率特性的幅值和相位角。当从0变化到时,和的变化情况分别称为系统的幅频特性和相频特性,总称为频率特性。,输出与输入的正弦幅值之比为,输出与输入的正弦相位差为,2.频率特性的含义及特点,(1)频率特性分析是通过分析不同谐波输入时系统的稳态响应来表示系统的动态特性。,传递函数是输出与输入的拉氏变换之比,故,式中:,(58),(59),同理:,系统的频率特性为输出和输入的傅氏变换之比。,(510),(514),式中:,(58),(59),(2)系统的频率特性是系统脉冲响应函数的傅氏变换:,(513),(3)在经典控制理论范畴,频域分析法比时域分析法简单,因为它不仅可以方便地研究参数变化对系统性能的影响,而且可方便地研究系统的稳定性,并可直接在频域中对系统进行校正和综合,以改善性能。对于外部干扰和噪声信号,可通过频率特性分析,在系统设计时,选择合适的带宽,从而抑制其影响。,(4)对于高阶系统,应用频域分析法比较简单,对于高阶系统,应用时域分析法比较困难,而应用频域分析法较为简单,尤其在系统设计和校正时。,3.机械系统动刚度的概念,图3-2所示,质量弹簧阻尼系统,传递函数为:,系统阻尼比,系统无阻尼自然频率。系统的频率特性为:,上式反映了动态作用力与系统动态变形之间的关系,实质上表示的是机械结构的动柔度,也就是它的动刚度的倒数。,即该机械系统的静刚度为k。,(515),其动刚度曲线如右图所示,对求偏导,并令,可得当,具有最小值,(516),由此可以看出,增大机械结构的阻尼,能大大提高系统的动刚度。若,则系统不存在谐振频率,也不会发生谐振。,例5.1如图所示系统,传递函数为,求系统的频率特性及系统对正弦输入的稳态响应。,解:令则系统的频率特性为,系统的幅频特性为,系统的相频特性为:,根据频率响应的定义得系统的稳态响应为:,如果输入的不是正弦信号,而是一个阶跃信号,输出的傅氏变换为:,其幅值为:,相位为:,输出响应为:,可以看出输出也不是正弦函数。,例5.2如图所示吸振器系统,若质量块受到干扰力,如何选择吸振器参数和,使质量块产生的振幅最小。,解:建立系统的微分方程,其动刚度,则位移x1与干扰力f之间的传递函数为:,而,由频率响应可知,当系统输入为正弦信号时,系统输出为同频率正弦信号。显然要使,则应使,即应选择吸振器参数满足上式时,可使质量的振幅为零,施加于的干扰被和吸收了,这就是振动控制中的吸振器。,例5.3一典型质量弹簧阻尼系统如图所示,系统输入力f(t)为矩形波。f(t)=f(t-2T),试求系统的输出位移x(t)。,解:系统的传递函数为,其幅频特性,相频特性,根据线性系统的叠加原理,系统输出表达式为:,4.频率特性的表示方法,(1)对数坐标图或称伯德(Bode)图(2)极坐标图或称奈奎斯特(Nyquist)图(3)对数幅相图或称尼柯尔斯(Nichols)图,5.2频率特性的对数坐标图(伯德图),1.对数坐标图,伯德图:以对数坐标表示的频率特性图,由对数幅频图和对数相频图组成。横坐标是按频率的以10为底的对数分度。,用对数坐标表示频率特性的优点:可以将幅值相乘转化为幅值相加,便于绘制多个环节串联组成的系统的对数频率特性图;可采用渐近线近似的方法绘制对数幅频图,简单方便,尤其是在控制系统设计、校正及系统辨识方面,优点更突出;对数分度扩展了频率范围,尤其是低频段的扩展,对分析机械系统的频率特性是有利的。,2.各种典型环节的伯德图,(1)比例环节K,比例常数K不随频率而变,故其幅频特性和相频特性都是平行于横轴的水平直线,大小分别为20lgK和0。,(2)积分环节,对数幅频特性为:,对数幅频图为一直线,且过(1,0)点,斜率为:-20dB/dec,对数相频特性为:,相位角与频率无关,是一条平行于横轴的直线,若系统包含两个积分环节,即,则其对数幅频特性为,对数幅频图为过(1,0)点,斜率为-40dB/dec的直线,相频特性为,(3)微分环节,对数幅频特性为:,对数幅频图为一条过(1,0)点,斜率为20dB/dec的直线,对数相频特性为:,当有两个微分环节时,幅频特性为过(1,0)斜率为40dB/dec的直线;相频特性为平行于横轴的水平线,相位角恒等于180度。,(4)一阶惯性环节,其幅频特性,其相频特性,工程上经常采用近似作图法来画幅频特性曲线,方法如下:,右图即为惯性环节伯德图,可以看出渐近线近似画法的误差发生在转角频率处,误差值为:,此外,可以看出惯性环节具有低通滤波的特性。,(5)一阶微分环节,幅频特性,相频特性,可以看出一阶微分环节和惯性环节的对数幅频图对称于零分贝线。,(6)振荡环节,幅频特性,相频特性,(526),(525),可以看出渐近线与阻尼比无关,但实际幅值变化与有关,在附近时,若值较小,则会产生谐振峰。,由(525)求出对数幅频曲线的渐近线:,即渐近线是一条零分贝线,相频特性:以为横坐标,对应于不同的值,形成一簇对数相频曲线。,(7)二阶微分环节,幅频特性,相频特性,可以看出二阶微分环节的频率特性与振荡环节只是相差一个符号,故其对数幅频曲线对称于零分贝线,对数相频特性对称于线。,(8)延时环节,幅频特性,即对数幅频曲线为一条零分贝直线。,相频特性,相位角随频率成线性变化,但对于对数分度,相频特性则表现为曲线。,3.绘制伯德图的一般步骤,(1)由传递函数求出频率特性,并将化为若干典型环节频率特性相乘的形式;(2)求出各典型环节的转角频率等参数;(3)分别画出各典型环节的幅频曲线的渐近线和相频曲线;(4)将各环节的对数幅频曲线的渐近线进行叠加,得到系统幅频曲线的渐近线,并对其进行修正;(5)将各环节相频曲线叠加,得到系统的相频曲线。,例5.4已知系统的传递函数为,画出系统的伯德图,解:(1)求系统的频率特性,并化成典型环节相乘形式,(2)求各典型环节的参数,比例环节,积分环节,振荡环节,惯性环节,一阶微分环节,(3)分别画出各典型环节的幅频曲线的渐近线和对数相频曲线。,(4)将各环节的对数幅频曲线的渐近线进行叠加,得到系统幅频曲线的渐近线,并对其进行修正。,4.系统类型和对数幅频曲线之间的关系,设系统开环传递函数为:,其开环频率特性为:,即低频渐近线是分贝的水平线,如右图所示,(1)静态位置误差系数Kp,对于0型系统,其对数幅频曲线在低频段即时,幅值为,(2)静态速度误差系数Kv,对于I型系统,其对数幅频曲线在低频段是一条斜率为20dB/dec的线段,即,速度误差系数Kv在数值上等于交点频率。,当时,其幅值为:,即速度误差系数Kv与对数幅频曲线低频率起始线段(或其延长线)在时的对应幅值相等。若该线段或其延长线与零分贝线的交点频率为,则:,(3)静态加速度误差系数Ka,对于II型系统,其对数幅频曲线在低频段是一条斜率为40dB/dec的线段,即加速度误差系数Ka与对数幅频曲线起始段(或延长线)在处对应的幅值相等。,若该线段或其延长线与零分贝线的交点频率为,即,速度误差系数Ka在数值上等于交点频率。,5.3频率特性的极坐标图(奈奎斯特图),1.极坐标图,优点:可以将系统在整个频域中的频率特性表现在一张图上,在进行稳定性分析和系统校正时,应用极坐标图比较方便。,缺点:绘图时必须计算出每个频率下的幅值和相位角,对多个环节串联的系统,需要将某一频率下各环节的幅值相乘、相位相加,不如伯德图方便。,的极坐标图是当从零变化到无穷大时,表示在极坐标上的的幅值与相角的关系图。极坐标图是在复平面内用不同频率的矢量端点轨迹来表示系统的频率特性。,2.典型环节的极坐标图,(1)比例环节K,幅频特性和相频特性分别为:,极坐标为实轴上的一点,(2)积分环节,幅频特性和相频特性分别为:,极坐标为负虚轴,且由负无穷远处指向原点。,(3)微分环节,幅频特性和相频特性分别为:,极坐标为正虚轴,且由原点指向正无穷远处,(4)惯性环节,式中:,(5)一阶微分环节,幅频特性和相频特性分别为:,一阶微分环节为过点(1,0),平行于虚轴的上半部直线。,幅频特性和相频特性分别为:,(6)振荡环节,振荡环节极坐标图与阻尼比有关,对应不同的值,形成一簇极坐标曲线。对于欠阻尼系统的情况,系统会出现,谐振峰值,记作,该频率称谐振频率。对于过阻尼系统,极坐标接近一个半圆,因为很大时,特征方程的根全为实根,而起主导作用的是靠近虚轴的极点,此时系统已经接近为一阶惯性环节。,幅频特性和相频特性分别为:,(7)二阶微分环节,二阶微分环节极坐标图与阻尼比有关,对应不同的值,形成一簇极坐标曲线。不论如何,极坐标曲线在时,从点(1,0)开始,在时指向无穷远处。,(8)延时环节,幅频特性和相频特性分别为:,由上面式子可以看出,延时环节的极坐标图为单位圆,特点是信号通过延时环节时,幅值不变而相位角发生改变,输出滞后于输入,滞后角与输入信号的频率成正比增大。,当惯性环节与其他环节串联时,系统的频率特性会产生相应的变化,例如与惯性环节、比例环节和延时环节串联。,惯性环节与比例环节的极坐标图为第四象限半圆,加入延时环节后,对应每一频率的幅值不变,但相位滞后了。系统的极坐标图由原来的第四象限内的半园扩展到整个复平面。,3.系统奈奎斯特图的一般画法,例5.5画出下列两个0型系统的奈奎斯特图,其中K,T1,T2,T3均大于零,上式说明0型系统的奈奎斯特图的起点均为正实轴上的一个有限点(K,0)。,例5.6画出下列两个I型系统的奈奎斯特图,其中K,T1,T2均大于零,解:频率特性可表示为,幅频特性为,相频特性为,(532),根据式532,令对的实部和虚部分别取极限,解:较增加了一个惯性环节,(533),幅频特性为,相频特性为,根据式533,令对的实部和虚部分别取极限,例5.7画出下面II型系统的奈奎斯特图,其中K,T1,T2均大于零,解:频率特性可表示为,(534),幅频特性为,相频特性为,例5.8画出如下系统的奈奎斯特图,其中K,T均大于零,解:系统频率特性,幅频特性为,相频特性为,对于一般形式的系统频率特性,对于不同型次的系统,其奈奎斯特图具有以下特点:,(1)当时,奈奎斯特图起点取决于系统的型次,0型系统起始于正实轴的某一有限点;,I型系统起始于相位角为的无穷远处,渐近线为一平行于虚轴的直线;,II型系统起始于相位角为的无穷远处。,(2)当时,若,奈奎斯特图以顺时针方向收敛于原点,即幅值为零,相位角与分母和分子阶次之差有关,即,(3)当含有零点时,其频率特性的相位将不随频率的增大而单调减小,奈奎斯特图会产生“变形”或“弯曲”,具体画法与各环节的时间常数有关。,5.4最小相位系统的概念,1.最小相位系统,最小相位系统:系统开环传递函数的所有零点和极点都在s平面的左半平面。,特点:频率从零变化到无穷大,相位角变化范围最小,且当时,其相位角为,2.非最小相位系统,非最小相位系统:系统开环传递函数有零点或极点在s平面的右半平面。,特点:频率从零变化到无穷大,相位角变化范围总大于最小相位系统,且当时,其相位角不等于,例5.10判断下面传递函数是否为最小相位系统,分别画出伯德图,并比较相频特性,其中T1T20,解:分别写出三个系统零点和极点并画出分布图,可以看出它们中只有为最小相位系统,和为非最小相位系统。,可以看出它们的幅频特性相同,相频特性不同分别为:,例5.11已知系统的传递函数如下,求其频率特性,解:该系统为非最小相位系统,其频率特性为:,幅频特性为,相频特性为,右图为其奈奎斯特图(其中k取3),5.6闭环频率特性与频域性能指标,1.闭环频率特性,如图所示系统其闭环传递函数为,则,被称作闭环频率特性,2.频域性能指标,(1)谐振峰值和谐振频率,若,则谐振峰值为,又称相对谐振峰值,若取分贝值,则:,将闭环频率特性的幅值用表示。,当的幅值为时,的最大值称作谐振峰值。,在谐振峰值处的频率称为谐振频率。,例如:图示二阶系统频率特性为,幅频特性为,令,则:,当取最大值时,应满足:,可得:,在范围内,系统会产生谐振峰值Mr,而且越小,Mr越大;谐振频率与系统的阻尼自然频率,无阻尼自然频率有如下关系:,当时,系统产生共振。当时,系统不存在谐振频率,即不产生谐振。,二阶系统Mr与阻尼比的关系如图46所示。当时Mr迅速增大,此时瞬态响应超调量Mp也增大,当时,Mr和Mp存在着相似关系。对于机械系统,通常要求,(2)截止频率和频宽,截止频率是指系统闭环频率特性的对数幅值下降到其零频率幅值以下3dB时的频率,即:,故也可以说是系统闭环频率特性幅值为其零频率幅值的时的频率,如图:,系统的频宽:指从0到的频率范围。频宽(或称带宽)表征系统响应的快速性,也反映了系统对噪声的滤波性能。大的频宽可以改善系统的响应速度,使其跟踪或复现输入信号的精度提高,但同时对高频噪声的过滤特性降低,系统抗干扰性能减弱。因此,必须综合考虑来选择合适的频带宽度。,一阶系统频宽的求解:,得:,故,一阶系统的截止频率等于系统的转角频率,即等于系统时间常数的倒数。说明频宽越大,系统时间常数T越小,响应速度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论