



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GliomaTissueModelingbyCombingtheInformationofMRIandinvivoMultivoxelMRSWeibeiDOU,AoyanDONG,PingCHITsinghuaNationalLaboratoryforInformationScienceandTechnologyDept.ofElectronicEngineering,TsinghuaUniversity,Beijing,100084,P.R.Chinae-mail:ShaowuLINeuroimagingCenterofTiantanHospitalCapitalMedicalUniversity,Beijing,P.R.ChinaJean-MarcCONSTANSUnitdIRM,EA3916,CHRUCaen,FranceAbstractThispaperpresentsagliomamodelizationmethodandaregression-likemodeltocreateagraduallygliomaimage(GlioIm).Multimodalsignal,imagesofmagneticresonanceimaging(MRI)andinvivomultivoxelMRspectroscopy(MRS)arecombinedbytheregression-likemodelwithspatialresolutionregistration.ThismodelingmethodconsistsoffeaturemodelsofgliomasuchasthesignalintensityofMRimageandthemetabolitechangesofMRS,thecorrelationmodelnotedasmetabolitesratio(MetaR)andthecombinedregression-likemodel.TheestimatedGlioImincludesbothbrainstructureandgliomagradeinformation.Anonlinearmodelisproposedandvalidatedinthispaper.ThetestingdataisacquiredbySiemensTrioTim(3T)andSyngoMRB15atBeijingTiantanhospitalofChina.TheMRSofthreegliomapatients,twoaffectedbyastrocytomaandonebyglioma,andthechemicalshiftimaging(CSI)referenceT2imageswereconsideredinourvalidationexperiment.TheresultingGlioImsarecomparedwithgroundtruthprovidedbyneuroradiologistsofTiantanandverifiedwiththeirpathologyreport.Theyreportthatourmethodandmodelareveryefficient.Keywords-MRSpectroscopy;brain;glioma;chemicalshiftimaging;MRI;image;modeling;combinationI.INTRODUCTIONTodiagnosebraintissueabnormalities,liketumor,itsnecessarytousemultispectralmagneticresonanceimages(MRIs),suchasT1-weight,T2-weight,Gadolinium,FLAIRetcinordertofindsomeoftumorspropertiessuchassize,position,sort,andrelationshipwithothertissues,etc.Butthetumortypeandgradeareusuallydiagnosedfromhistopathologicalexaminationofasurgicalspecimen.However,Hydrogen1(1H)magneticresonancespectroscopy(MRS)isanon-invasiveMRtechniquethatprovidesbiochemicalinformationofmetabolites.Themajorbiochemicalcharacteristicscannoninvasivelyprovideusefulinformationonbraintumortypeandgrade1.Inmanystudies,invivo1H-MRShasbeenpresentedfordeterminingthetypeandgradeoftumors123.SinceinvivoMRSmeasurementsandanalysisaredependentontheacquisitiontechnicalthatcompromisethespatialresolutionandaccuracyforresultingmetabolitevalues4,metabolicchangeswithdiseaseisfrequentlysubtleanddiffuse.Furthermore,bychemical-shiftimaging(CSI)technique,themetaboliteimagesso-calledMRspectroscopicimaging(MRSI)canbecreatedbymultivoxelMRSinformation,butitisnotvisuallyinterpretableinthesenseofastructuralMRI4.Sothat,forthetumortissueclassification,itisimportantthatMRSIiscombinedwithMRItoestimatethevariationofmetabolitesandtoyieldmuchinformationregardingtissue.Duringmorethanadecade,automaticbraintumorclassificationbyMRShasbeendeveloped5,butthemorecleardefinitionofbraintumortypeandgrademaybeobtainedbycombinationofMRSIandMRI5.AtechniquetodifferentiateglioblastomafrommetastasislesionsbyusingMRIandMRSdatahasbeenpublishedin6.Wangetal.describedaclassificationofbraintumorsbyusingfeaturesselectionandfuzzyconnectednessin7,thesefeaturesareextractedfromMRIandMRSdata.TherearetwodifficultiesforcombingMRSIdataandMRIdata:firstly,thesedataarefromdifferentmodalities,sotheyarenotinthesamespatialresolution,verylowspatialresolutioninvoxelforMRSIandhighspatialresolutioninpixelforMRI.Secondly,oneMRimagecorrespondstothedistributionofalltissues,ortissuestructure.ButoneMRSimageisaprojectionimagewhichcorrespondstoonemetaboliteorratiobetweenseveralmetabolites.SothedifferentmetabolitevaluesmakevariationMRSimages,justlikethemappingofmetabolitedistributionsbyMRSIpresentedin8.ThequestionforapplicationishowtocombinetheseMRSimagesandMRimagestogiveanautomatictissueclassificationresult.ThekeypointofthecombinationishowtomodelthemetabolitedistributionfromMRS,whichcorrespondstoinformationfromMRimages.Forautomaticdescriptionofbraintumortypeandgrade,weproposeamodelizationmethodofgliomatissuesbycombingtheinformation,fromMRimagesandMulitivoxelMRSdata.ItcancreateaMRS-weightedMRimageautomaticallywhichkeepsthehighspatialresolutionlikeMRimageandthegreylevelscorrespondtothedeteriorationofbraintissues.ThesecondpartofthispaperintroducesthegliomatissuefeaturesbothinMRSvaluesandinMRimages.Thecombinationmodelingofthetwotypesofinformationispresentedinthethirdsectionanditsvalidationisshowninthefourthsection.Theconclusionaboutourresearchisgivenattheendofthispaper.ThisworkisfundedbyTsinghuaNationalLaboratoryforInformationScienceandTechnology(TNList)Cross-disciplineFoundation978-1-4244-4713-8/10/$25.002010IEEEII.FEATURESMODELOFGLIOMATISSUEFollowingtheresearchofdiagnosingbraintumorbyMRimagesandMRS,wecansummarizetwotypesofcharacteristicsofglioma,oneisthesignalintensityofT1-weightandT2-weightimages,andtheotheroneisthechemical-shiftvaluesofmetabolitespresentedbyMRSdata.A.SignalIntensityCharacteristicsofMRimagesWehaveproposedsomefuzzymodelingmethodsofdifferenttumorouscerebraltissuesonMRimagesbasedonfusionoftissuefeaturesin91011.TableIdescribesthecharacteristicsofbraintissuesbycreatingagradualityofsignalintensityasafunctionofdifferenttissuesandsequencesofMRI10,whereCSFistheabbreviationofcerebralspinalfluid,GMtheabbreviationofgraymatter,andWMwhitematter.IntableI,the“Seqs”isshortforSequencesofMRI”.Thesymbol“+”presentsahyper-signal;itmeansthatthesignalintensityisveryhighandtheimageisverybright.Thesymbol“-”presentsahypo-signal,theintensityisverylowandtheimageisverydark.Thesymbol“-+”meansthatthesignalintensityishigherthanhypo-signal,and“+-”meansthatitisdarkerthanhyper-signal.“-”meansthatthesignalintensityislowerthanthehypo-signal,and“+”meansthatitisbrighterthanthehyper-signal.AnexampleofT1-weightedimagenotedasT1,andT2-weightedimagenotedasT2areshowninFig.1TABLEI.SIGNALINTENSITYCHARACTERISTICSOFBRAINTISSUESONMRIMAGESSequencesGradualityofsignalintensityCSFGMWMGliomaEdemaNecrosisT1-+-+-T2+-+-(a)(b)Figure1.OriginalMRIimages(a)T1image,(b)T2imageB.MetaboliteChangesFeaturesofMRSTABLEII.SCALARDESCRIPTIONOFMETABOLITEVALUESMetabolitelevelabsentverylowlittlelowlowmediumlittlehighhighveryhighabbreviationAVLLLLMLHHVHThereareonlyseveralmetaboliteswhichcorrespondtogliomaamongalargenumberofmetabolitesofhumanbody.N-acetyl-asparate(NAA),creatine(Cr),choline(Cho),myo-inositol(mI),lactate(Lac)andfreelipids(Lip).ThevariationofthesemetabolitescanbeorderedinascalarformasshowninTableII,wherethescalarorderis:absent,verylow,littlelow,low,medium,littlehigh,high,veryhigh,whichcorrespondtometabolitevaluesfrom0tomaximum.ThemetabolicchangeswithbraintissuesareshowninTableIII.Itisconcludedfrom121314.TABLEIII.METABOLITECHANGESFEATURESOFBRAINTISSUESONMRSMetabolitevariationofmetabolitescorrespondingwithbraintissuesCSFGMWMGliomaEdemaNecrosisNAAVLVHHL/VLMAChoAMLHH/VHLHACrLHHM/LLLAmILMLHHLH/MALipAVLLHLVHLacLHVLAH/LHLHHIII.MODELIZATIONBYCOMBININGMRSWITHMRITheaimofthismodelizationstudyistocreateagradually?gliomaimage,notedasGlioIm,whichincludesbrainstructureandgliomagradeinformation.IfthegliomagradeinformationisconsideredasacorrelationfunctionbetweenMRsignalandpathologicalchanges.Weproposearegression-likemodeltoestimatetheGlioImfromMRimagesnotedasMRImandmetabolitechanges.A.CorrelationmodelOneofthecorrelationfunctionsismetabolitechangescorrespondingtoglioma.BycombiningtheinformationinTableIandTableIII,wecanrebuildaconclusionTableIVaboutgliomacharacteristicswithrelativequantizationofmetabolitesofTableIII.Therelativequantizationisratiosbetweenmetabolitevalues,suchastheratioofChoandNAAnotedasCho/NAAinTableIV,itiscalledmetabolitesratio(MetaR),andTableIViscalledcorrelationmodelinthispaper.TABLEIV.METABOLITESRATIOCHARACTERISTICOFBRAINTISSUESMetabolitevariationofmetabolitescorrespondingwithbraintissuesCSFGMWMGliomaEdemaNecrosisCho/NAAAVLLVHHACho/CrALLHHAmI/CrMLMHHALip/CrAVLVLHMVHLac/CrLHVLAHHHTheMetaRcharacteristicsofglioma,edemaandnecrosisareenhancedandthenormaltissuesarereduced.TheyassortwithsignalintensitycharacteristicsofT2-weightedimagedescribedinTableI.B.Regression-likemodelwithspatialresolutionregistrationNormaly,MetaRisafunctionofvoxeldecidedbyCSIsliceshowninFig.2.Sothat,itisatwodimensionalfunctionnotedasMetaR(i,v),where“i”isindexofmetaboliteand“v”istheindexofvoxelcorrespondedwithCSIslice.Asthesamereason,GlioImcanbecreatedasathreedimensionalfunction,notedasGlioIm(v,p,g),where“p”isindexofpixelcorrespondedwithMRIm,and“g”isthegreylevelofselectedMRimageandcorrespondsto“p”.Infact,MRImisatwodimensionalfunctionnotedasMRIm(p,g),whereandgG,1,2,.TTPDFLAIRGadoDiffusionPerfusion=GConsidertwovariables,MRImandGlioIm,MRImisacertainimagelikeT2,GlioImisanestimatedimage.ThecorrelationmodelMetaRcanbeconsideredasonerelationshipbetweenthem.Sotheregression-likemodelforestimatingGlioImfromMRImcanbecreatedasequation(1).Im(,)(,)Im(,)GliovpgMetaRivMRpg=(1)Where“”notesanecessaryoperator,and“p”correspondsto“v”.Ifalinearregressiveisnecessary,equation(1)canberewrittenas(2):Im(,)(,)Im(,)(,)GliovpgMetaRivMRpgMetaRjv=+(2)where“i”and“j”indicatedifferentmetabolites.C.NonlinearRegression-likemodelToavoidmosaiceffects,weproposeanonlinearregression-likemodelwithspatialresolutionregistrationin(3).Im(,)Im(,)exp(,)(.)MRpgGliovpgMetaRivMetaRjvT=+(3)where“T”isatimeconstantcorrespondingtoMRIm(p,g).AccordingtothecorrelationmodelofTableIV,theLip/CrandLac/Crarespecificfeatureswhicharedependentonthetumorgrade.Sothat,inthemodelofequation(2),wehave:,/,/,/,/ijMetaRChoNaaChoCrmICrLipCrLacCr=IJIJIJ,BecausetheJofMetaRisthegrademarker,ittakesaninterceptiveroletomakeadifferentgreylevelfromothervoxelsandindicatesavariablegrade.IV.VALIDATIONANDRESULTA.MaterielThreegliomapatients,twoaffectedbyastrocytomaandonebyglioma,wereconsideredinourvalidationexperiment.ThetestingdataareadatapairconsistedofCSIrawdataandtheirreferenceimages.ThesedatawereacquiredwithSTEAMsequenceatBeijingTiantanhospital(China),bySiemensMRTrioTim(3T)andsyngoMRB15.TheMRSrawdataaremeasuredbycsi_st/90protocolwithTR3000/TE72/TM6.T2-weightedimagesaremeasuredbyt2_tse_traprotocolwithTR4500/TE80.TwoexamplesofthesedataareshowninFig.2.Thenonlinearregression-likemodel(3)isvalidatedbyourtestingexperimentation.MRImof(3)isT2with0.570.57mm2pixelsizeand5mmslicethickness.ThetimeconstantTin(3)isindicatedbyhistogrampeakofCSIreferenceimagesinT2.ThemetabolitevaluesarecalculatedbyTHU-MRSv0.5developedbyourresearchgroupandpublishedin15.TheCSIslicesnotethattheMRSvoxelsizeis141420mm3.(a)(b)Figure2.ExampleofCSIslice(down-left)withitsreferenceimagesandmetabolitesvaluescorrespondedwithvoxelsize141420mm3.(a)fromanastrocytomapatient,masculine30yearsold.(b)fromagliomapatient,feminie48yearsold.B.ResultThevalidationresultscorrespondedtoVOIareshowninFig.3(f)andFig.4(f).Thehighersignalorbrighterpixelin(f)marksgreaterpossibilityofgliomaorhighertumorgrade.InFig.3and4,(a)aretheoriginalT2-weightedimageswiththesignofVOI,(b)arethehandlabelresultsas“Groundtruth”fromneuroradiologistsofTiantan,(c)areonepartof(a)inVOI,(d)aretheresultsofexponentialcomponentofequation(3)whichpresentsthecombinedinformationofT2andCho/Naa,(e)aretheresultsofsuperpositionofT2and(Lip+Lc)/Cr.(a)T2+VOI(b)Groundtruth(c)OriginalT2inVOI(d)MetaR(Cho/Naa)(e)MetaR(Lac+Lip)/Cr)(f)ResultingGlioImFigure3.ResultingGlioIm(f)ofthepatientaffectedbyastrocytomaC.DiscussionThebrighterpixelinFig.3(d)or(f)denotesnotonlyhigherCho/NaabutalsobrighterT2.BecauseMetaRvaluesinTableIVareconsistentwiththeintensityofT2.Soitmayindicategliomaandhighergraderegion.ThedarkerpixelspresentlowerCho/NaaanddarkerT2,mayindicatenormaltissues.Thentherearesomebrighterpixelsin(d)and(f),theyarenotconnectedwithgliomaregion,theyareCSFperhaps,becauseCSFisbrighterinT2.WecanremovethemsimplybyusingregisteredFLAIRimage.TheregisteredGadoliniumimagealsocanbeusedtoindicateenhancedpixelsorregion.(a)T2+VOI(b)Groundtruth(c)originalT2inVOI(d)MetaR(Cho/Naa)(e)MetaR(Lac+Lip)/Cr)(f)ResultingGlioImFigure4.ResultingGlioIm(f)ofthepatientaffectedbygliomaBecauseamongthe5metaboliteratiosinTableIV,onlythreepresentevidentchanges,likeCho/Naa,Lip/CrandLac/Cr.Theothertworatiosarenotutilizedinourexperiment.ItispossibletouseotherMRIsequencessuchasT1,butitisnecessaryeithertotransformgreylevelsofimageortoinversethevalueofMetaR.Asmentionedin16,animageresultedfromfusionofgliomafeaturesextractedfrommultimodalitysignal,aspresentedin9,canalsobeusedasMRIminthisgliomamodel.V.CONCLUSIONAdvantagesofMRItechniqueprovidemorepossibilitywithmulti-sequencesandmultimodalitiessignaltorealizethetumordiagnosis,treatmentandprognosis.Butitisheavyworkforprocessingallsignalstodoafinaldecision.SoAutomaticquantificationandcombinationanalysisisveryimportantandthemodelingoftumorfeaturesisthekeypointforperformingit.Wehaveproposedaframeworkoffuzzyfeaturesfusionsystemin16andpublishedsomeresearchresultsaboutfusingthetumorfeaturesextractedfromT1,T2andprotondensityimages9.Inthispaper,wepresenttheprimarystudyaboutthetumorfeaturescombinationofMRSandMRimages.Theproposedmodelingmethodandnonlinearregression-likemodelarevalidforseparatingthebraintissuesespeciallyglioma.Itwillbeusedfortumortissuesclassification,segmentation,tumortypeandgradedecision,etc.Thereisstillmuchworktoimprovethismodelandtointegrateitwiththefusionsysteminthefuture.REFERENCES1HoweFA,BartonSJ,CudlipSA,StubbsM,SaundersDE,MurphyM,WilkinsP,OpstadKS,DoyleVL,McLeanMA,BellBA,GriffithsJR.“Metabolicprofilesofhumanbraintumorsusingquantitativeinvivo1Hmagneticresonancespectroscopy”.MagnResonMed.2003Feb;49(2):223-32.2PreulMC,CaramanosZ,CollinsDL,VillemureJ-G,LeblancR,OlivierA,PokrupaR,ArnoldD.Accurate,non-invasivediagnosisofhumanbraintumorsbyusingprotonmagneticresonancespectroscopy.NatMed1996;2:323325.3MajsC,AguileraC,CosM,CaminsA,CandiotaAP,Delgado-GoiT,SamitierA,CastaerS,SnchezJJ,MatoD,AcebesJJ,ArsC.“Invivoprotonmagneticresonancespectroscopyofintraventriculartumoursofthebrain”EurRadiol.2009Aug;19(8):2049-59.4A.A.Maudsley,C.Domenig,V.Govind,A.Darkazanli,C.Studholme,K.Arheart,C.Bloomer,“MappingofbrainmetabolitedistributionsbyvolumetricprotonMRspectroscopicimaging(MRSI)”MagneticResonnanceinMedicin61:548-559(2009).5Garcia-GomezJ.,LutsJ.,Julia-SapeM.,KrooshofP.,TortajadaS.,VicenteJ.,MelssenW.,Fuster-GarciaE.,OlierI.,PostmaG.,MonleonD.,Moreno-TorresA.,PujolJ.,CandiotaA.-P.,Martinez-BisbalM.C.,SuykensJ.A.K.,BuydensL.,CeldaB.,VanHuffelS.,ArusC.,RoblesM.,Multiproject-multicenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy,MagneticResonanceMaterialsinPhysics,BiologyandMedicine,vol.22,Feb.2009,pp.5-18.6LutsJ.,LaudadioT.,Martinez-BisbalM.C.,VanCauterS.,MollaE.,PiquerJ.,SuykensJ.A.K.,HimmelreichU.,CeldaB.,VanHuffelS.,DifferentiationbetweenbrainmetastasesandglioblastomamultiformebasedonMRI,MRSandMRSI,inProc.ofthe22ndIEEEInternationalSymposiumonComputer-BasedMedicalSystems(CBMS),Albuquerque,NewMexico,Aug.2009,pp.1-8.7QiangWang,EiriniKaramaniLiacouras,EricksonMiranda,UdayS.Kanamalla,andVasileiosMegalooikonomou,ClassificationofbraintumorsusingMRIandMRSdata,Proc.SPIE6514,(2007)pp.65140S-18.8A.A.Maudsley,C.Domenig,V.Govind,A.Darkazanli,C.Studhol
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国地理试题及答案
- 云南省玉溪市元江县第一中学2024-2025学年高二物理第二学期期末预测试题含解析
- 云南省巧家县巧家第一中学2025届物理高二下期末质量跟踪监视试题含解析
- 重庆第二外国语学校高2025届生物高二第二学期期末教学质量检测模拟试题含解析
- 车辆运输服务合同合同解除范本
- 茶叶企业社会责任履行合同
- 柴油运输保险合同范本
- 2025年快手磁力引擎暑期内容营销招商手册
- 餐饮特许经营合同(17篇)
- 2024年揭东农商银行微贷中心招聘笔试真题
- 人教B版高中数学必修第二册 4.7数学建模活动:生长规律的描述【课件】
- 娱乐场所安全管理条例
- 超星尔雅学习通《社会科学方法论(南开大学)》2024章节测试答案
- 苏教版小学1-6年级英语单词
- 托育服务项目运营管理方案
- 江苏省盐城市、南京市2024年数学高一下期末统考模拟试题含解析
- 生物医学电子学智慧树知到期末考试答案章节答案2024年天津大学
- 2024回弹法检测岩石抗压强度技术规程
- 《水电工程水生生态调查与评价技术规范》(NB-T 10079-2018)
- 2023年哈尔滨市道外区人民法院聘用制书记员招聘考试试题及答案
- 通信架空光缆工程验收检查表
评论
0/150
提交评论