3comparing control strategies for automomous line-tracking robots.pdf_第1页
3comparing control strategies for automomous line-tracking robots.pdf_第2页
3comparing control strategies for automomous line-tracking robots.pdf_第3页
3comparing control strategies for automomous line-tracking robots.pdf_第4页
3comparing control strategies for automomous line-tracking robots.pdf_第5页
已阅读5页,还剩1页未读 继续免费阅读

3comparing control strategies for automomous line-tracking robots.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

COMPARINGCONTROLSTRATEGIESFORAUTONOMOUSLINETRACKINGROBOTSLUISALMEIDA,ALEXANDREMOTA,PEDROFONSECAIDA,ALEX,PJTIAPTDEPARTAMENTODEELECTRONICAETELECOMUNICA5ESUNIVERSIDADEDEAVEIRO,P3810AVEIRO,PORTUGALTEL35134370859FAX35134381128ABSTRACTAUTONOMOUSMOBILEROBOTICSISAVERYEXCITINGAREAFORSTUDENTSPARTICULARLYFORTHOSEWHOATTENDCOURSESONELECTRONICSTHEAUTHORSHAVEBEENINVOLVEDINSEVERALACTIVITIESINTHISAREATOGETHERWITHSTUDENTSOFTHEUNIVERSITYOFAVEIROINPARTICULAR,ONEOFSTICHACTIVITIESISTOBUILDROBOTSTOFOLLOWALINEDRAWNONTHEJLOORINORDERTODOTHISEFFICIENTLYASIMULATORHASBEENIMPLEMENTEDANDUSEDTOTESTTHEINFLUENCEOFDIFFERENTCONTROLAPPROACHESTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEMATLABBASEDROBOTMODELANDLINETRACKINGSIMULATORITTHENCOMPARESSEVERALDRFFERENTCONTROLAPPROACHESINTERMSOFRESTILTINGINTEGRALABSOLUTEERRORIAEANDINTEGRALSQUAREDERRORISE,EASINESSOFTUNINGANDCOMPLEXIFYOFTHERESPECTIVECODETHECOMPAREDAPPROACHESAREPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FZZY,TABLEBASEDFUZZY,SELFORGANISINGFIIZZYANDNEURALNETINVERSEMODELBASED1INTRODUCTIONBUILDINGAUTONOMOUSROBOTSISANINTERDISCIPLINARYACTIVITYANDTHUSHASAGREATPEDAGOGICALVALUEWITHTHISFACTINMINDTHEAUTHORSHAVEBEENSUPPORTINGSTUDENTTEAMSFROMTHEUNIVERSITYPFAVEIROTOPARTICIPATEINANANNUALEVENTTHATTAKESPLACESINFRANCEWHERE,BASICALLY,AUTONOMOUSMOBILEROBOTSHAVETOFOLLOWALINE,AMONGSTOTHERTASKSTOBETTERUNDERSTANDTHEBEHAVIOUROFTHELINETRACKINGROBOTANDTOSHOWSTUDENTSHOWDIFFERENTSCIENTIFICCONCEPTSFROMPHYSICS,GEOMETRY,ELECTRONICS,INSTRUMENTATIONANDCONTROLAREINTEGRATEDWHENBUILDINGSUCHAROBOT,THEAUTHORSHAVEDEVELOPEDANANALYTICAL0780344847198I100001998IEEE542MODELOFTHELINEFOLLOWINGROBOTLTHEMODELTAKESINTOACCOUNTSEVERALREALWORLDCONSTRAINTSANDALLOWSTOPREDICTTHEMOVEMENTOFTHEROBOTBASEDONTHEELECTRICALVOLTAGESAPPLIEDTOTHEMOTORSALSOINLTHEAUTHORSHAVEDESCRIBEDTHEGEOMETOFTHELINETRACKINGPROCESSWHICHWASUSEDTOBUILDASIMULATORTHISALLOWEDTODETERMINETHEPATHOFTHEROBOTASWELLASTHERELATIONSHIPBETWEENTHISPATHANDTHEREFERENCEPATHTHATTHEROBOTISTOFOLLOWTHESIMULATORISAVALUABLETOOLTOCOMPAREDIFFERENTCONTROLAPPROACHES,ASWELLASDIFFERENTSENSORLAYOUTS,PRIORTOTHEROBOTCONSTRUCTIONTHISALLOWSFORBETTERDECISIONSCONCERNINGTHEPHYSICALPROPERTIESOFTHEROBOTBEFOREACTUALLYBUILDINGITINTHENEXTSECTIONTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEROBOTMODELANDOFTHESIMULATORINSECTION3SEVERALCONTROLAPPROACHESARECOMPARED,NAMELYPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FUZZY,TABLEBASEDFUZZY,SELFORGANISINGFUZZYANDNEURALNETINVERSEMODELBASEDCONCLUSIONSAREDRAWNINSECTION4WHICHALSOINCLUDESSOMECOMMENTSCONCERNINGONGOINGWORK2SIMULATINGTHEROBOT21THEROBOTMODELTHEROBOTSWHICHHAVEBEENBUILTBYTHESTUDENTSINTHEACTIVITIESMENTIONEDBEFOREARENORMALLYSIMPLEFIG1MOTIONISACHIEVEDBYUSINGTWOINDEPENDENTDCELECTRICMOTORSTHATDRIVEONEWHEELEACHDIFFERENTIALDRILEI5USEDTOSTEERTHEROBOTONEORTWOEXTRACASTERWHEELSAREAMC98COIMBRAUSEDTOKEEPTHEROBOTHORIZONTALLYTHEDEVIATIONOFTHEROBOTFROMTHEREFERENCEPATHISMEASUREDBYASETOFSENSORSPLACEDAHEADOFTHEROBOTWHICHARE,NORMALLY,INFRAREDLIGHTDETECTORSTYPICALLY,CLOSEDLOOPCONTROLOFTHEWHEELSVELOCITYHASNOTBEENDONETHEVELOCITYOFEACHWHEELISCONTROLLEDINDIRECTLYBYAPPLYINGVOLTAGESTOTHEMOTORSTHISOPTIONMAYDECREASETHEPERFORMANCEOFTHETRACKINGALGORITHMBUTSIMPLIFIESTHEFINALTUNINGREMEMBERTHATTHEUSEOFCLOSEDLOOPWHEELSPEEDCONTROLWOULDREQUIRETHETUNINGOFTWOEXTRAINDEPENDENTLOOPSFIGURE1THEBASICROBOTTHESECHARACTERISTICSHAVEBEENUSEDTODERIVEAMODELFORTHELINETRACKINGROBOTFIG2TOIMPROVEITSACCURACYTHEMODELTAKESINTOACCOUNTINERTIAMASSMANDMOMENTOFINERTIAA,FRICTIONCOEFFICIENTSFORTRANSLATIONALBYANDROTATIONALB,MOVEMENTS,ELECTRICMOTORSPARAMETERSTHERESISTANCERANDTHEMOTORCONSTANTKM,ADDITIVENOISEINTHESENSORREADINGSANDPHYSICALLIMITATIONSOFTHEROBOTSUCHASTHELENGTHOFTHELINESENSORS5ANDTHEMAXIMUMVOLTAGETHATCANBEAPPLIEDTOTHEMOTORSV“THEMODELISDESCRIBEDINLANDALLOWSTOCALCULATEBOTHLINEARVANDANGULAR0VELOCITIESOFTHEROBOTBASEDONTHEVOLTAGESAPPLIEDTOTHEMOTORSVOWAVERAGE,ANDV,DIFFERENTIAL22THELINETRACKINGSIMULATORTHEROBOTMODELREFERREDTOABOVE,WASCOMPLEMENTEDWITHAGEOMETRICANALYSISOFTHELINETRACKINGPROBLEMTHISPROBLEMFALLSWITHINTHEGENERALPATHTRACKINGPROBLEMWHICHHASBEENTREATEDINTHELITERATURE,EG2INPARTICULAR,THESIMULATORPRESENTEDINTHISARTICLEFOLLOWSAREACTIVEAPPROACHTOTRACKANUNKNOWNLINEASOPPOSEDTOTHEPLANNINGAPPROACHOFTRACKINGAPATHPREVIOUSLYPLANNEDANDTHUS,KNOWNINADVANCEINLAGEOMETRICANALYSISISALSOSHOWNTHATALLOWSTOCALCULATETHENEXTDEVIATIONFROMTHELINEEBASEDONTHEPRESENTDEVIATION,WHEELSVELOCITIESANDANGULARPOSITIONOFTHEROBOTRELATIVETOTHELINETHEROBOTISUSEDASREFERENTIALHOWEVER,INORDERTOBETTERDEFINETHEREFERENCETRAJECTORYANDTOVISUALISETHEROBOTTRAJECTOQ,ANOTHERMODELWASBUILTINWHCHTHEROBOTPOSITIONWASREFERREDTOANABSOLUTEREFERENTIALINTHISGEOMETRICMODEL,THENEXTDEVIATIONFROMTHELINEEISCALCULATEDBASEDONTHEROBOTABSOLUTEPOSITIONANDTHEWHEELSVELOCITIESKNOWINGTHEROBOTPOSITIONXO,YO,ARITISPOSSIBLETOCALCULATETHEINTERSECTIONOFTHESENSORARRAYWITHTHELINEXEY,WHICHTHENALLOWSTOCALCULATETHEDEVIATIONEFIG3THERESULTINGDEPENDENCYOFERELATIVETOTHEPOSITIONOFTHEROBOTISNONLINEARTHEVELOCITIESAREUSEDTOCALCULATETHEROBOTDISPLACEMENTDZ,DA,DURINGANINFINITESIMALTIMEINTERVAL200WASFOUNDTHATBESTRESULTSWEREOBTAINEDWITHK,TOOANDKP380FIGURE8SHOWSTHEDEVIATIONOBTAINEDALONGTHEREFERENCEPATHWITHTHESEVALUESTHEABSOLUTEMAXIMUMDEVIATIONIS23MMANDTHEIAEIS66ANOTEWORTHREFERRINGISTHEFACTTHATTHECONTROLLERISCAPABLEOFCONVERGINGTOZERODEVIATIONOVERSTRAIGHTSEGMENTSBUTINCURVESWITHCONSTANTRADIUS,THEDEVIATIONCONVERGESTOANONZEROVALUESINCETHEANGLEOFTHEREFERENCEPATHISCONSTANTINSTRAIGHTSEGMENTSSTEPINPUTANDINCREASESCONSTANTLYINCURVESWITHFIXEDRADIUSRAMPINPUTTHELINETRACKINGROBOTCANBECONSIDEREDASATYPE1SYSTEMTHESAMEHAPPENSWITHTHEPROPORTIONALCONTROLLER33PROPORTIONALINTEGRALDERIVATIVETHISTYPEOFCONTROLLER,KNOWNASPID,RESULTSFROMTHEPREVIOUSONEBYADDINGANINTEGRALTERMTOTHEACTUATINGSIGNALTHISALLOWSTOBRINGTHEDEVIATIONTOZEROOVERANYPARTOFTHELINE,EITHERSTRAIGHTORCURVETHEDEBLATION00,02004006008001000002TIMESAMPLINGINTONALSFIGURE8USINGAPDCONTROLLERWITHKP400ANDK380545CANBEKEPTVERYSMALLWHENTHERIGHTPARAMETERSAREUSEDALTHOUGHITALWAYSINCREASESINTHEBEGINNINGANDENDINGOFANYCURVETHECONTROLLEROUTPUTISVDL,KPEKDCEKIIEWITHKP200,KP200ANDK,LOOITWASPOSSIBLETODECREASETHEIAE78ANDTHEMAXIMUMABSOLUTEERROR25MMNOATTEMPTWASDONETOFINDTHEBEST3VALUESANYWAYTHERESULTSAREBETTERTHANWITHTHENONOPTIMISEDPDCONTROLLERALTHOUGHCONTROLLERSOFTHISTYPENORMALLYACHIEVEAGOODPERFORMANCE,THETUNINGOFTHE3CONSTANTSISVERYDIFFICULTTHEUSEOFNONOPTIMALCONSTANTSMAYCAUSEACONSIDERABLEDEGRADATIONINPERFORMANCE34FUZZYLOGICAPPROACHTHEFUZZYLOGICAPPROACHCANBEANALTERNATIVETOTHEPREVIOUSSTRATEGIESALTHOUGHITISMORECOMPLEXTHANEITHERP,PDORPIDAPPROACHES,ITISSTILLRELATIVELYEASYTOIMPLEMENTSINCEITISBASEDONINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMER4INTHISCASEAFUZZYINCREMENTALCONTROLLERWITHNORMALISEDUNIVERSESOFDISCOURSEANDGAUSSIANMEMBERSHIPFUNCTIONSISUSED51THECONTROLLERINPUTSARETHETRAJECTORYERROREANDITSDERIVATIVECETHECONTROLLEROUTPUTISTHEDIFFERENTIALVOLTAGEVDIPTHEFUZZYCONTROLSURFACECANBEDEPICTEDONFIGURE9NOTETHENONLINEARSURFACEANDTHEGRADIENTNEARTHECENTERTWOAPPROACHESWERETRIEDWITHTHLSTYPEOFCONTROLLERRULEBASEDANDTABLEBASEDALGORITHMTHEFIRSTONEUSESFUNCTIONSFROMTHEMATHWORKSFUZZYLOGICTOOLBOXTHESECONDISONLYA2DLOOKUPTABLETHERESULTSAREIDENTICALINTERMSOFIAE,ISEANDMAXIMUMABSOLUTEERRORSOMEBETTERRESULTSWEREOBTAINEDADDINGALINEARINTEGRALTERMTOTHEFUZZYALGORITHMSEETABLE1FOR11FIGURE9FUZZYCONTROLSURFACEDETAILSHOWEVERTHERESULTSWEREALITTLEBITMOREMODESTTHANTHEONESOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERTRYINGTOIMPROVETHESERESULTSLEADTOTHEUSEOFASELFORGANISINGFUZZYCONTROLLER35SELFORGANISINGFUZZYAPPROACHTHESELFORGANISINGFUZZYCONTROLLERSOCUSESSOMEKINDOFPERFORMANCEMEASURETOUPDATETHERULEBASETHEMOSTCOMMONAPPROACHHASAHIERARCHICALSTRUCTUREINWHICHTHELOWERLEVELISATABLEBASEDCONTROLLERTHEHIGHERLEVELMONITORSTHEERRORANDTHECHANGEINERRORANDMODIFIESTHETABLE,WHENNECESSARY,THROUGHAMODIFIERALGORITHM6THEPERFORMANCEMEASUREMENTISCARRIEDOUTUSINGEXPRESSION2PISTHEPERFORMANCEMEASUREORTHEPENALTY,THATISADDEDTOTHECONTROLTABLE,EISTHEERRORANDCEISTHECHANGEINERRORKCEISATIMECONSTANTANDGPISTHELEARNINGRATEFACTORSTARTINGWITHATABLESIMILARTOTHEONEUSEDONTHETABLEBASEDCONTROLLERITISPOSSIBLE,AFTER10TRAININGSESSIONSOFONEFULLREFERECEPATHEACH,TOIMPROVETHEOVERALLPERFORMANCEUPTOTHEONEOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERFIGURE10SHOWSTHEIAEEVOLUTIONALONGTHE10TRAININGSESSIONSNOTETHATTHETRAININGOCCURS“ONLINE“WHILETHEROBOTISACTUALLYMOVINGALONGTHELINEASWELLASWITHTHESIMPLEFUZZYAPPROACHES,THEADDITIONOFANINTEGRALACTIONTOTHESOCALLOWSTOACHIEVEEVENBETTERRESULTSASCANBESEENINTABLE136NEURALNETWORKSAPPROACHKNOWINGTHATTHEROBOTMODELPREDICTSNONLINEAR,IAEEVOLDONTRAPCTONMSFIGURE10SELFORGANISINGCONTROLLERIAEEVOLUTION546STABLE,DYNAMICBEHAVIOURLEADTOTHEIDEAOFUSINGSOMEKINDOFNEURALNETWORKAPPROACHINORDERTOIMPLEMENTADIRECTINVERSECONTROLALGORITHMTHEINVERSEMODELWASIDENTIFIEDBYTHEUSEOFA2LAYERFEEDFORWARDNETWORKWITH4INPUTS,8HIDDENNONLINEARNEURONSANDALINEAROUTPUTNEURONTHENETWORKWASTRAINEDOFFLINEWITHTHELEVENBERGMARQUARDTMETHOD7AND,AFTER5000EPOCHS,ITWASPOSSIBLETOGETA“GOOD“INVERSEMODELWITHTHEOBTAINEDNETWORKADIRECTINVERSECONTROLSCHEMEWASIMPLEMENTEDSITHERESULTSOBTAINEDTHISWAYARETHEBESTONESAMONGTHECOMPAREDCONTROLSTRATEGIESASCANBESEENINTABLE14CONCLUSIONSTABLE1PRESENTSTHERESULTSOBTAINEDWITHEACHCONTROLLINGAPPROACHTWOMAINSORTSOFCONTROLLERSWEREUSED,THOSECAPABLEOFLEARNINGSOC,SOCIANDNNANDTHEREMAININGONESFROMTHESELATTERONESITISPOSSIBLETOSEETHATTHEUSEOFFUZZYCONTROLLERSDOESNOTBRINGALONGANIMMEDIATEBENEFITASIMPLE“HANDTUNED“PDCONTROLLERPERFORMSBETTERWHENANINTEGRALCOMPONENTISADDEDTOTHEFUZZYCONTROLLERS,THEIRPERFORMANCEISIMPROVEDUPTOTHEONEOFTHEPDCONTROLLERHOWEVER,THEV,PARAMETERISSTILLSUPERIORINTHEPDAPPROACHNOTICETHATADIFFERENCEOF003MSYIELDSADIFFERENCEOF10SAFTER30MOPTIMALLYTUNINGAPDCONTROLLERISEITHERVERYDIFFICULTHIGHLYTIMECONSUMINGOREVENIMPOSSIBLEWHENTHEREISNOANALYTICALMODELOFTHEROBOTANDTHETUNINGHASTOBEDONEWITHTHEREALROBOTTHEPIDAPPROACHISALSODIFFICULTTOTUNEAND,INMANYCASES,THERESULTINGPERFORMANCEMAYEVENBEWORSETHANFORTHEPDTHETUNINGOFTHEFUZZYCONTROLLERSISEASIERTOACHIEVESINCEITISEMBEDDEDINTHEINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMERRULEBASEDAPPROACHORINTHETABLETABLE1COMPARINGDIFFERENTCONTROLSTRATEGIESTOTRACKANUNKNOWNLINECONTROLLZRIAEISEVMEANEMAX/IAE/PP15103303000491PDPDOPTIMIZEDPIDFUZZYFUZZYIFUZZYTABLEFUZZYTABLEISOC10EPOCHSSOCI15EPOCHSNNSO00EPOCHS9501403200333766007030002356780090310025481080210310051289501402900373710702103100532995013029003437660070310024566200603000215952004031002166BUILTFROMSUCHRULESTABLEBASEDAPPROACHCONCERNINGTHECONTROLLERSCAPABLEOFLEARNING,THESOCPRESENTSAGOODSTRATEGYTOIMPROVEPERFORMANCEWITHARELATIVELYLOWCOMPUTATIONALCOSTBESIDES,ITSONLINELEARNINGCAPABILITYASWELLASITSSPEEDOFLEARNINGMAKEITVERYATRACTIVETHENEURALNETBASEDAPPROACHISVERYPOWERFULBUTVERYTIMECONSUMINGOFFLINETRAININGANDREQUIRINGLARGECOMPUTATIONALRESOURCESFLOATINGPOINTCALCULATIONSTHUS,ITISNOTWELLSUITEDTOBEUSEDWITHLOWPROCESSINGPOWERMICROCONTROLLERSTHEAUTHORSARECURRENTLYWORKING,TOGETHERWITHSTUDENTS,INTHECONSTRUCTIONOFANEWLINETRACKI

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论