




已阅读5页,还剩1页未读, 继续免费阅读
3comparing control strategies for automomous line-tracking robots.pdf.pdf 免费下载
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
COMPARINGCONTROLSTRATEGIESFORAUTONOMOUSLINETRACKINGROBOTSLUISALMEIDA,ALEXANDREMOTA,PEDROFONSECAIDA,ALEX,PJTIAPTDEPARTAMENTODEELECTRONICAETELECOMUNICA5ESUNIVERSIDADEDEAVEIRO,P3810AVEIRO,PORTUGALTEL35134370859FAX35134381128ABSTRACTAUTONOMOUSMOBILEROBOTICSISAVERYEXCITINGAREAFORSTUDENTSPARTICULARLYFORTHOSEWHOATTENDCOURSESONELECTRONICSTHEAUTHORSHAVEBEENINVOLVEDINSEVERALACTIVITIESINTHISAREATOGETHERWITHSTUDENTSOFTHEUNIVERSITYOFAVEIROINPARTICULAR,ONEOFSTICHACTIVITIESISTOBUILDROBOTSTOFOLLOWALINEDRAWNONTHEJLOORINORDERTODOTHISEFFICIENTLYASIMULATORHASBEENIMPLEMENTEDANDUSEDTOTESTTHEINFLUENCEOFDIFFERENTCONTROLAPPROACHESTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEMATLABBASEDROBOTMODELANDLINETRACKINGSIMULATORITTHENCOMPARESSEVERALDRFFERENTCONTROLAPPROACHESINTERMSOFRESTILTINGINTEGRALABSOLUTEERRORIAEANDINTEGRALSQUAREDERRORISE,EASINESSOFTUNINGANDCOMPLEXIFYOFTHERESPECTIVECODETHECOMPAREDAPPROACHESAREPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FZZY,TABLEBASEDFUZZY,SELFORGANISINGFIIZZYANDNEURALNETINVERSEMODELBASED1INTRODUCTIONBUILDINGAUTONOMOUSROBOTSISANINTERDISCIPLINARYACTIVITYANDTHUSHASAGREATPEDAGOGICALVALUEWITHTHISFACTINMINDTHEAUTHORSHAVEBEENSUPPORTINGSTUDENTTEAMSFROMTHEUNIVERSITYPFAVEIROTOPARTICIPATEINANANNUALEVENTTHATTAKESPLACESINFRANCEWHERE,BASICALLY,AUTONOMOUSMOBILEROBOTSHAVETOFOLLOWALINE,AMONGSTOTHERTASKSTOBETTERUNDERSTANDTHEBEHAVIOUROFTHELINETRACKINGROBOTANDTOSHOWSTUDENTSHOWDIFFERENTSCIENTIFICCONCEPTSFROMPHYSICS,GEOMETRY,ELECTRONICS,INSTRUMENTATIONANDCONTROLAREINTEGRATEDWHENBUILDINGSUCHAROBOT,THEAUTHORSHAVEDEVELOPEDANANALYTICAL0780344847198I100001998IEEE542MODELOFTHELINEFOLLOWINGROBOTLTHEMODELTAKESINTOACCOUNTSEVERALREALWORLDCONSTRAINTSANDALLOWSTOPREDICTTHEMOVEMENTOFTHEROBOTBASEDONTHEELECTRICALVOLTAGESAPPLIEDTOTHEMOTORSALSOINLTHEAUTHORSHAVEDESCRIBEDTHEGEOMETOFTHELINETRACKINGPROCESSWHICHWASUSEDTOBUILDASIMULATORTHISALLOWEDTODETERMINETHEPATHOFTHEROBOTASWELLASTHERELATIONSHIPBETWEENTHISPATHANDTHEREFERENCEPATHTHATTHEROBOTISTOFOLLOWTHESIMULATORISAVALUABLETOOLTOCOMPAREDIFFERENTCONTROLAPPROACHES,ASWELLASDIFFERENTSENSORLAYOUTS,PRIORTOTHEROBOTCONSTRUCTIONTHISALLOWSFORBETTERDECISIONSCONCERNINGTHEPHYSICALPROPERTIESOFTHEROBOTBEFOREACTUALLYBUILDINGITINTHENEXTSECTIONTHISARTICLEPRESENTSABRIEFDESCRIPTIONOFTHEROBOTMODELANDOFTHESIMULATORINSECTION3SEVERALCONTROLAPPROACHESARECOMPARED,NAMELYPROPORTIONAL,PROPORTIONALDERIVATIVE,PROPORTIONALINTEGRALDERIVATIVE,FUZZY,TABLEBASEDFUZZY,SELFORGANISINGFUZZYANDNEURALNETINVERSEMODELBASEDCONCLUSIONSAREDRAWNINSECTION4WHICHALSOINCLUDESSOMECOMMENTSCONCERNINGONGOINGWORK2SIMULATINGTHEROBOT21THEROBOTMODELTHEROBOTSWHICHHAVEBEENBUILTBYTHESTUDENTSINTHEACTIVITIESMENTIONEDBEFOREARENORMALLYSIMPLEFIG1MOTIONISACHIEVEDBYUSINGTWOINDEPENDENTDCELECTRICMOTORSTHATDRIVEONEWHEELEACHDIFFERENTIALDRILEI5USEDTOSTEERTHEROBOTONEORTWOEXTRACASTERWHEELSAREAMC98COIMBRAUSEDTOKEEPTHEROBOTHORIZONTALLYTHEDEVIATIONOFTHEROBOTFROMTHEREFERENCEPATHISMEASUREDBYASETOFSENSORSPLACEDAHEADOFTHEROBOTWHICHARE,NORMALLY,INFRAREDLIGHTDETECTORSTYPICALLY,CLOSEDLOOPCONTROLOFTHEWHEELSVELOCITYHASNOTBEENDONETHEVELOCITYOFEACHWHEELISCONTROLLEDINDIRECTLYBYAPPLYINGVOLTAGESTOTHEMOTORSTHISOPTIONMAYDECREASETHEPERFORMANCEOFTHETRACKINGALGORITHMBUTSIMPLIFIESTHEFINALTUNINGREMEMBERTHATTHEUSEOFCLOSEDLOOPWHEELSPEEDCONTROLWOULDREQUIRETHETUNINGOFTWOEXTRAINDEPENDENTLOOPSFIGURE1THEBASICROBOTTHESECHARACTERISTICSHAVEBEENUSEDTODERIVEAMODELFORTHELINETRACKINGROBOTFIG2TOIMPROVEITSACCURACYTHEMODELTAKESINTOACCOUNTINERTIAMASSMANDMOMENTOFINERTIAA,FRICTIONCOEFFICIENTSFORTRANSLATIONALBYANDROTATIONALB,MOVEMENTS,ELECTRICMOTORSPARAMETERSTHERESISTANCERANDTHEMOTORCONSTANTKM,ADDITIVENOISEINTHESENSORREADINGSANDPHYSICALLIMITATIONSOFTHEROBOTSUCHASTHELENGTHOFTHELINESENSORS5ANDTHEMAXIMUMVOLTAGETHATCANBEAPPLIEDTOTHEMOTORSV“THEMODELISDESCRIBEDINLANDALLOWSTOCALCULATEBOTHLINEARVANDANGULAR0VELOCITIESOFTHEROBOTBASEDONTHEVOLTAGESAPPLIEDTOTHEMOTORSVOWAVERAGE,ANDV,DIFFERENTIAL22THELINETRACKINGSIMULATORTHEROBOTMODELREFERREDTOABOVE,WASCOMPLEMENTEDWITHAGEOMETRICANALYSISOFTHELINETRACKINGPROBLEMTHISPROBLEMFALLSWITHINTHEGENERALPATHTRACKINGPROBLEMWHICHHASBEENTREATEDINTHELITERATURE,EG2INPARTICULAR,THESIMULATORPRESENTEDINTHISARTICLEFOLLOWSAREACTIVEAPPROACHTOTRACKANUNKNOWNLINEASOPPOSEDTOTHEPLANNINGAPPROACHOFTRACKINGAPATHPREVIOUSLYPLANNEDANDTHUS,KNOWNINADVANCEINLAGEOMETRICANALYSISISALSOSHOWNTHATALLOWSTOCALCULATETHENEXTDEVIATIONFROMTHELINEEBASEDONTHEPRESENTDEVIATION,WHEELSVELOCITIESANDANGULARPOSITIONOFTHEROBOTRELATIVETOTHELINETHEROBOTISUSEDASREFERENTIALHOWEVER,INORDERTOBETTERDEFINETHEREFERENCETRAJECTORYANDTOVISUALISETHEROBOTTRAJECTOQ,ANOTHERMODELWASBUILTINWHCHTHEROBOTPOSITIONWASREFERREDTOANABSOLUTEREFERENTIALINTHISGEOMETRICMODEL,THENEXTDEVIATIONFROMTHELINEEISCALCULATEDBASEDONTHEROBOTABSOLUTEPOSITIONANDTHEWHEELSVELOCITIESKNOWINGTHEROBOTPOSITIONXO,YO,ARITISPOSSIBLETOCALCULATETHEINTERSECTIONOFTHESENSORARRAYWITHTHELINEXEY,WHICHTHENALLOWSTOCALCULATETHEDEVIATIONEFIG3THERESULTINGDEPENDENCYOFERELATIVETOTHEPOSITIONOFTHEROBOTISNONLINEARTHEVELOCITIESAREUSEDTOCALCULATETHEROBOTDISPLACEMENTDZ,DA,DURINGANINFINITESIMALTIMEINTERVAL200WASFOUNDTHATBESTRESULTSWEREOBTAINEDWITHK,TOOANDKP380FIGURE8SHOWSTHEDEVIATIONOBTAINEDALONGTHEREFERENCEPATHWITHTHESEVALUESTHEABSOLUTEMAXIMUMDEVIATIONIS23MMANDTHEIAEIS66ANOTEWORTHREFERRINGISTHEFACTTHATTHECONTROLLERISCAPABLEOFCONVERGINGTOZERODEVIATIONOVERSTRAIGHTSEGMENTSBUTINCURVESWITHCONSTANTRADIUS,THEDEVIATIONCONVERGESTOANONZEROVALUESINCETHEANGLEOFTHEREFERENCEPATHISCONSTANTINSTRAIGHTSEGMENTSSTEPINPUTANDINCREASESCONSTANTLYINCURVESWITHFIXEDRADIUSRAMPINPUTTHELINETRACKINGROBOTCANBECONSIDEREDASATYPE1SYSTEMTHESAMEHAPPENSWITHTHEPROPORTIONALCONTROLLER33PROPORTIONALINTEGRALDERIVATIVETHISTYPEOFCONTROLLER,KNOWNASPID,RESULTSFROMTHEPREVIOUSONEBYADDINGANINTEGRALTERMTOTHEACTUATINGSIGNALTHISALLOWSTOBRINGTHEDEVIATIONTOZEROOVERANYPARTOFTHELINE,EITHERSTRAIGHTORCURVETHEDEBLATION00,02004006008001000002TIMESAMPLINGINTONALSFIGURE8USINGAPDCONTROLLERWITHKP400ANDK380545CANBEKEPTVERYSMALLWHENTHERIGHTPARAMETERSAREUSEDALTHOUGHITALWAYSINCREASESINTHEBEGINNINGANDENDINGOFANYCURVETHECONTROLLEROUTPUTISVDL,KPEKDCEKIIEWITHKP200,KP200ANDK,LOOITWASPOSSIBLETODECREASETHEIAE78ANDTHEMAXIMUMABSOLUTEERROR25MMNOATTEMPTWASDONETOFINDTHEBEST3VALUESANYWAYTHERESULTSAREBETTERTHANWITHTHENONOPTIMISEDPDCONTROLLERALTHOUGHCONTROLLERSOFTHISTYPENORMALLYACHIEVEAGOODPERFORMANCE,THETUNINGOFTHE3CONSTANTSISVERYDIFFICULTTHEUSEOFNONOPTIMALCONSTANTSMAYCAUSEACONSIDERABLEDEGRADATIONINPERFORMANCE34FUZZYLOGICAPPROACHTHEFUZZYLOGICAPPROACHCANBEANALTERNATIVETOTHEPREVIOUSSTRATEGIESALTHOUGHITISMORECOMPLEXTHANEITHERP,PDORPIDAPPROACHES,ITISSTILLRELATIVELYEASYTOIMPLEMENTSINCEITISBASEDONINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMER4INTHISCASEAFUZZYINCREMENTALCONTROLLERWITHNORMALISEDUNIVERSESOFDISCOURSEANDGAUSSIANMEMBERSHIPFUNCTIONSISUSED51THECONTROLLERINPUTSARETHETRAJECTORYERROREANDITSDERIVATIVECETHECONTROLLEROUTPUTISTHEDIFFERENTIALVOLTAGEVDIPTHEFUZZYCONTROLSURFACECANBEDEPICTEDONFIGURE9NOTETHENONLINEARSURFACEANDTHEGRADIENTNEARTHECENTERTWOAPPROACHESWERETRIEDWITHTHLSTYPEOFCONTROLLERRULEBASEDANDTABLEBASEDALGORITHMTHEFIRSTONEUSESFUNCTIONSFROMTHEMATHWORKSFUZZYLOGICTOOLBOXTHESECONDISONLYA2DLOOKUPTABLETHERESULTSAREIDENTICALINTERMSOFIAE,ISEANDMAXIMUMABSOLUTEERRORSOMEBETTERRESULTSWEREOBTAINEDADDINGALINEARINTEGRALTERMTOTHEFUZZYALGORITHMSEETABLE1FOR11FIGURE9FUZZYCONTROLSURFACEDETAILSHOWEVERTHERESULTSWEREALITTLEBITMOREMODESTTHANTHEONESOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERTRYINGTOIMPROVETHESERESULTSLEADTOTHEUSEOFASELFORGANISINGFUZZYCONTROLLER35SELFORGANISINGFUZZYAPPROACHTHESELFORGANISINGFUZZYCONTROLLERSOCUSESSOMEKINDOFPERFORMANCEMEASURETOUPDATETHERULEBASETHEMOSTCOMMONAPPROACHHASAHIERARCHICALSTRUCTUREINWHICHTHELOWERLEVELISATABLEBASEDCONTROLLERTHEHIGHERLEVELMONITORSTHEERRORANDTHECHANGEINERRORANDMODIFIESTHETABLE,WHENNECESSARY,THROUGHAMODIFIERALGORITHM6THEPERFORMANCEMEASUREMENTISCARRIEDOUTUSINGEXPRESSION2PISTHEPERFORMANCEMEASUREORTHEPENALTY,THATISADDEDTOTHECONTROLTABLE,EISTHEERRORANDCEISTHECHANGEINERRORKCEISATIMECONSTANTANDGPISTHELEARNINGRATEFACTORSTARTINGWITHATABLESIMILARTOTHEONEUSEDONTHETABLEBASEDCONTROLLERITISPOSSIBLE,AFTER10TRAININGSESSIONSOFONEFULLREFERECEPATHEACH,TOIMPROVETHEOVERALLPERFORMANCEUPTOTHEONEOBTAINEDWITHTHEOPTIMISEDPDCONTROLLERFIGURE10SHOWSTHEIAEEVOLUTIONALONGTHE10TRAININGSESSIONSNOTETHATTHETRAININGOCCURS“ONLINE“WHILETHEROBOTISACTUALLYMOVINGALONGTHELINEASWELLASWITHTHESIMPLEFUZZYAPPROACHES,THEADDITIONOFANINTEGRALACTIONTOTHESOCALLOWSTOACHIEVEEVENBETTERRESULTSASCANBESEENINTABLE136NEURALNETWORKSAPPROACHKNOWINGTHATTHEROBOTMODELPREDICTSNONLINEAR,IAEEVOLDONTRAPCTONMSFIGURE10SELFORGANISINGCONTROLLERIAEEVOLUTION546STABLE,DYNAMICBEHAVIOURLEADTOTHEIDEAOFUSINGSOMEKINDOFNEURALNETWORKAPPROACHINORDERTOIMPLEMENTADIRECTINVERSECONTROLALGORITHMTHEINVERSEMODELWASIDENTIFIEDBYTHEUSEOFA2LAYERFEEDFORWARDNETWORKWITH4INPUTS,8HIDDENNONLINEARNEURONSANDALINEAROUTPUTNEURONTHENETWORKWASTRAINEDOFFLINEWITHTHELEVENBERGMARQUARDTMETHOD7AND,AFTER5000EPOCHS,ITWASPOSSIBLETOGETA“GOOD“INVERSEMODELWITHTHEOBTAINEDNETWORKADIRECTINVERSECONTROLSCHEMEWASIMPLEMENTEDSITHERESULTSOBTAINEDTHISWAYARETHEBESTONESAMONGTHECOMPAREDCONTROLSTRATEGIESASCANBESEENINTABLE14CONCLUSIONSTABLE1PRESENTSTHERESULTSOBTAINEDWITHEACHCONTROLLINGAPPROACHTWOMAINSORTSOFCONTROLLERSWEREUSED,THOSECAPABLEOFLEARNINGSOC,SOCIANDNNANDTHEREMAININGONESFROMTHESELATTERONESITISPOSSIBLETOSEETHATTHEUSEOFFUZZYCONTROLLERSDOESNOTBRINGALONGANIMMEDIATEBENEFITASIMPLE“HANDTUNED“PDCONTROLLERPERFORMSBETTERWHENANINTEGRALCOMPONENTISADDEDTOTHEFUZZYCONTROLLERS,THEIRPERFORMANCEISIMPROVEDUPTOTHEONEOFTHEPDCONTROLLERHOWEVER,THEV,PARAMETERISSTILLSUPERIORINTHEPDAPPROACHNOTICETHATADIFFERENCEOF003MSYIELDSADIFFERENCEOF10SAFTER30MOPTIMALLYTUNINGAPDCONTROLLERISEITHERVERYDIFFICULTHIGHLYTIMECONSUMINGOREVENIMPOSSIBLEWHENTHEREISNOANALYTICALMODELOFTHEROBOTANDTHETUNINGHASTOBEDONEWITHTHEREALROBOTTHEPIDAPPROACHISALSODIFFICULTTOTUNEAND,INMANYCASES,THERESULTINGPERFORMANCEMAYEVENBEWORSETHANFORTHEPDTHETUNINGOFTHEFUZZYCONTROLLERSISEASIERTOACHIEVESINCEITISEMBEDDEDINTHEINTUITIVERULESEXPLICITLYGIVENBYTHEPROGRAMMERRULEBASEDAPPROACHORINTHETABLETABLE1COMPARINGDIFFERENTCONTROLSTRATEGIESTOTRACKANUNKNOWNLINECONTROLLZRIAEISEVMEANEMAX/IAE/PP15103303000491PDPDOPTIMIZEDPIDFUZZYFUZZYIFUZZYTABLEFUZZYTABLEISOC10EPOCHSSOCI15EPOCHSNNSO00EPOCHS9501403200333766007030002356780090310025481080210310051289501402900373710702103100532995013029003437660070310024566200603000215952004031002166BUILTFROMSUCHRULESTABLEBASEDAPPROACHCONCERNINGTHECONTROLLERSCAPABLEOFLEARNING,THESOCPRESENTSAGOODSTRATEGYTOIMPROVEPERFORMANCEWITHARELATIVELYLOWCOMPUTATIONALCOSTBESIDES,ITSONLINELEARNINGCAPABILITYASWELLASITSSPEEDOFLEARNINGMAKEITVERYATRACTIVETHENEURALNETBASEDAPPROACHISVERYPOWERFULBUTVERYTIMECONSUMINGOFFLINETRAININGANDREQUIRINGLARGECOMPUTATIONALRESOURCESFLOATINGPOINTCALCULATIONSTHUS,ITISNOTWELLSUITEDTOBEUSEDWITHLOWPROCESSINGPOWERMICROCONTROLLERSTHEAUTHORSARECURRENTLYWORKING,TOGETHERWITHSTUDENTS,INTHECONSTRUCTIONOFANEWLINETRACKI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能家居系统配备下的二手房交易物业服务合同范本
- 2025年度油气田采矿权出让合同范本
- 2025年度爆破拆除工程安全生产责任及事故赔偿合同
- 2025年免疫治疗对自身免疫性多发性硬化症治疗的应用进展报告
- 2025房产代持及不动产交易保障服务合同
- 2025版聘用外籍IT专家合同范本
- 2025年度绿色建筑推广房屋代销合作协议
- 2025年拆墙工程智能化管理系统租赁合同
- 2025年度国有企业财务共享服务中心升级改造合同
- 2025年度企业高级管理人员综合素质提升协议
- 2024临床输血指南
- 露天煤矿无人驾驶技术应用发展报告
- 香港标准租约合同模板
- 国能灵璧浍沟70MW风电项目 XGC15000TM-1000t履带吊-1000及SCC8000A-800t履带吊安拆方案
- 生物-湖湘名校教育联合体2024年下学期高二10月大联考试题和答案
- 2024年秋季新北师大版7年级上册数学教学课件 2.1.2 相反数、绝对值
- 墨菲定律课件教学课件
- 天津市语文高考试卷及答案指导(2025年)
- 高一政治开学第一课课件-高中政治统编版必修一
- DZ∕T 0448-2023 滑坡崩塌泥石流灾害精细调查规范(正式版)
- 鲁教版(五四学制)中考英语6-9年级词汇表
评论
0/150
提交评论