已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JournalofMaterialsProcessingTechnology84(1998)4755Alaserbeammachining(LBM)databaseforthecuttingofceramictileI.Black*,S.A.J.Livingstone,K.L.ChuaDepartmentofMechanicalandChemicalEngineering,Heriot-WattUni6ersity,Riccarton,EdinburghEH144AS,UKReceived13December1997AbstractThispapercoversthecuttingofcommercially-availableceramictilesusingaCO2lasercuttingmachine,withtheobjectofproducingalaserbeammachining(LBM)databasethatcontainstheessentialparameterinformationfortheirsuccessfulprocessing.Variouslasercuttingparameterswereinvestigatedthatwouldgenerateacutinceramictilewhichrequiredminimalpost-treatment.Theeffectsofvariousshieldgases,ofmulti-passcuttingandofunderwatercuttingwerealsoexamined.1998ElsevierScienceS.A.Allrightsreserved.Keywords:CO2;Lasercutting;Ceramicmaterials;Advancedmanufacturingprocesses1.IntroductionandbackgroundManualmethodsofcuttingceramictilesareverysimilartothatforglass,i.e.scribingthematerialswithtungsten-carbidetippedcutter,followedbytheapplica-tionofabendingmomentalongthescribedlinetoinitiatecontrolledfracture.However,manualtech-niquesarelimitedtostraight-linecuttingandrelativelylarge-radiuscuts.Internalandundercutprofilesarenearlyimpossibletoproducewithscoringalone(withthepossibleexceptionofinternalcircles);moresophis-ticatedmethodshavingtobeappliedtoachievetheseprofiles.Traditionally,diamond-saw,hydrodynamic(waterjet)orultrasonicmachiningareusedtocreatecomplexgeometriesinceramictiles,buttheseprocessesareverytimeconsumingandexpensive.Forexample,typicaldiamond-sawcuttingspeedsareintheorderof20mmmin11,whileultrasonicdrillingofAl2O3takesover30sperhole2.ThemostcriticalfactorarisingfromuseofaCO2lasertocutceramictilesiscrackdamage,whichisessentiallycausedbyahightemperaturegradientwithintheceramicsubstrateduringthecuttingprocess.Thesecracksreducethestrengthandaresourcesforcriticalcrackgrowth,whichmayresultinpartialorcompletefailureofthetilesubstrate3.Thusareduc-tionofprocess-inducedcrackformationisparamountfortherealisticcommercialuseoflaserstocutceramictiles.2.LasercuttingparametersLasermachiningofanymaterialisacomplexprocessinvolvingmanydifferentparametersthatwhichallneedtoworkinconsorttoproduceaqualitymachiningoperation4,parameterssuchas:(i)laserpowerinput;(ii)focalsetting;(iii)assistgastypeandpressure;(iv)nozzleconfiguration;(v)workpiecethickness;and(vi)optophysicalproperties.Previousresearchwithintheauthorsdepartment1,5,6hasalsodemonstratedthecriticalityoftheaboveparametersinefficientlasercutting.2.1.LaserpowerLaserpowerdependsonthetypeoflaserused.Fortheworkreportedinthispaper,aFerrantiMF400CNClasercutterwasemployed,ratedatapoweroutputof400W.However,duetoupgrading,themaximumbeampowerachievablewasbetween520and*Correspondingauthor.Fax:441314513129;e-mail:i.blackhw.ac.uk0924-0136:98:$-seefrontmatter1998ElsevierScienceS.A.Allrightsreserved.PIIS0924-0136(98)00078-8I.Blacketal.:JournalofMaterialsProcessingTechnology84(1998)475548530Wincontinuouswave(CW)cuttingmode.Thelaseralsohadtheabilitytoworkinpulsemode(PM)andsuper-pulsemode(SPM;Fig.1).Todeterminetheequivalentpoweroutputduringpulsingoperation,apowerversespulsingchartwasusedinconjunctionwiththefollowingbasicequation9:PrPl:Psf1:(PlPr)Althoughthelasercuttercouldoperatebetweenfre-quenciesof50and5000Hz,avalueof500Hzwasrecommendedinpreviouswork1,5.Sincethissettingprovedtobesuccessful,onlylimitedinvestigationintootherfrequencieswascarriedout(at250Hz,750and100Hz).2.2.CuttingspeedTheCNCtableusedwiththeFerrantiMF400lasercutterhadamaximumfeedrateof10000mmmin1.Previouswork6indicatedthatfeedratesabove6000mmmin1provedtobeunstableforanystandardisedtesting.Theoptimumcuttingspeedvariedwiththepowersettingand,moreimportantly,withthethicknessoftheworkpiece.2.3.ShieldgastypeandpressureCompressedair,argon,nitrogenandoxygenwereusedasshieldgasesduringcutting,withpmax:4bar.Differentshieldgaseswereusedtoexaminedtheireffectoncutqualityafterprocessing,sincetheshieldgasnotonlycoolsandcutedgesandremovesmoltenmaterial,butalsogeneratesachemicalreactionwiththesub-stratematerial7.Theresultsofthischemicalreactiondifferforeachtypeofshieldgasused.Fortestpurposespwasvariedinstepsof0.5barfrom1to2.5bar,theninstepsof0.2barfrom2.6bartothemaximumattainablegaspressure.2.4.NozzleconfigurationThenozzlediametercontributesdirectlytothemaxi-mumachievablegaspressureandhencetothemassflowrateofthegaswasimportantfortheeconomicsofcutting,especiallywhenusingcylindersofargonandnitrogen.Onlycircularprofilesforthenozzleexitswereavailable(0.6mm5Ns520mm),butthisuniformnozzleexitgeometryallowedcuttinginanydirection.2.5.NozzleheightandfocalpositioningTheheightatwhichthenozzlewassetwasgovernedbythepositionofthefocalpoint.TheFerrantiMF400lasercutteronlypossessedalongfocallengthof110Fig.1.Cuttingmodes.mm(originallyashortfocallengthof46mmwasavailablebeforeupgrading)andthislengthcouldbealteredby95mm.Ifthenozzleheightwasincorrectlysetthebeamwouldclipthenozzleandreducetheequivalentpoweroutputtotheworkpiece6.Forthebulkofthetestingthefocalheightwassetsothefocalpointwasonthejob,i.e.onthetopsurfaceoftheworkpiece.Thisconditionobviouslygovernedtheposi-tionofthenozzleabovetheworkpiece.3.ExperimentalprocedureSixtypesofSi:Al2O3-basedceramictileswereexam-ined(Table1),originatingfromdifferentcountries.Notethatthecompositionofthetilesvaried,asdidthethickness,butallpossessedasurfaceglazeandinthecaseofthe7.5,8.6and9.2mmSpanishtilestheglazewasdoublelayered.3.1.Set-upprocedureSincetherewasaneedforstandardtestingcondi-tions,thefollowingprocedurewasimplementedbeforethestartoftesting:(i)thebeampowerwasvalidatedtospecification,i.e.520530Wdevelopedatfullpower(CW),althoughthisdroppedtoaround50WafterTable1Typesofceramictileusedts(mm)TiletypeBodycolour3.7BrazilianWhite4.7WhitePeruvianLightredItalian5.2SpanishRed5.74Spanish7.5RedRedSpanish8.69.2RedSpanishI.Blacketal.:JournalofMaterialsProcessingTechnology84(1998)475549about1hoftesting;(ii)thenozzleandthefocallenswerecheckedtoensurethattheywereingoodcondi-tion,i.e.cleanandundamaged;(iii)theshieldgaspressureregulatorandshieldgastankswereturnedontopreventdamagetothefocallens;(iv)thelaserbeamwascentredwithinthenozzleusingasquaretest,alowerenergyinputinPMbeingusedtocutasquareonamildsteel,thesparkingdensitythatresultedfromcuttingbeingcheckedtoseeifitwasequallydistributedaboutthecutline;and(v)thefocalpointwassetforitsdesiredpositioning,i.e.onthejob.3.2.TestingAstraight-linetest(SLT)wasusedtoevaluatethevariablelaserparametersforfullthrough-cutting(FTC).Angularcuttingwasconfiguredtoinvestigatehowthematerialreactedduringcuttingoftightgeome-try.Circulartestingandsquaretestingweredevisedtodeterminetheeffectsresultingfromcuttingvariousgeometries.TheSLTallowedforthecombinedtestingoftwoseparateparametersononetestpiece,uponcompletiontheresultsbeingpresentautomaticallyinacuttingmatrixintheformoftheresultingcuts.PandVarethemostimportantlaserparameters,astheydictatetheamountofenergyinputperunitlengthofcut,thereforetheywerepairedfortheSLT,aswerepandNSwhichgovernthemassflowrateoftheshieldgas.FortheP:Vtestruns,thepowerwasheldconstantwhilethecuttingspeedwasincreasedalongthecut(Fig.2(a).ThelengthofcutatconstantcuttingspeedhadtobeofsufficientmagnitudetoaccommodatetheaccelerationordecelerationoftheCNCtablebetweenfeedchanges:previouswork6indicatedthat50mmwasadequate.Interpretingtheresultswasmadeeasierduetotheirtabularformat,withthecuttingmatrixshowingclearlyanytrendsorpatternsoccurringduetothechangesinparametersettings.TheSLTalsoal-lowedalargenumberofcutstobecarriedoutoverashorttime-frame.Thisprovedadvantageous,asthelasertendedtodriftfromitsinitialsettingswithtime.Precautionshadtotakentoavoidlocalisedheatinginthetilefromcontinuouscloseproximitycutting,asachangeintilebodytemperaturewouldinvalidateanyresultingdata.Initially,a20mmseparationbetweencutswasusedandthisprovedsufficient.Inordertostudyhowclosethecutscouldbemadetoeachother,theseparationbetweencutswasreducedbyincrementsof2mmfromaninitial20mmspacing.DuringtheSLTtheotherlaserparametershadtobeheldconstant6.ForPversusV,fwasheldat500HzwithNS1.2mmandp3bar.Thebeamfocalpointremainedonthejob.TheresultsfromtheP:VcuttingmatrixdeterminedthefixedvaluesforthecuttingspeedandpulsesettingsforthesucceedingSLT.FortheNS:pFig.2.Testingconfiguration:(a)straight-linetesting;(b)angulartesting;(c)circulartesting;(d)squaretesting.cuttingmatrix,thenozzlesizeremainedconstantalongthex-axis(refertoFig.2(a)whilepwasincreasedinstepsof0.2barfrom2barinthey-axis(thecutseparationremainedconstantat20mm).Anewmatrixwascreatedsubsequentlyforeachnozzlesize.Angulartesting(Fig.2(b)wasusedtoinvestigatehowthecutmaterialreactedtosustainedexposurefromthelaserbeamduringthemachiningoftightgeometries(i.e.whereseveralcutsaremadeincloseproximitytoeachother).TheproximitytestmentionedforSLTdetermineshowcloseparallellinescanbecuttoeachother,whereasangulartestingisusedtodeter-minehowthecuttingofacuteangleseffectsthecutquality.Theanglescutfromaworkpiecewerereducedfrom45to10andthecorrespondingsurfacefinishquality(SFQ)wasnoted.I.Blacketal.:JournalofMaterialsProcessingTechnology84(1998)475550Table2Multi-passcuttingparametersPlCuttingmodePsNo.ofpassesLastcutCW60FTC9000100SPMFTC100Table3GradingofSFQGrading1Nocrackinginsurfaceglaze,solidsharpcutedgeMinimalglazecracking(WcB2mm)withslight2lossofsharpnessincutedgeMediumcracking(2mmBWcB4mm)andslight3damagetounglazedtilesubstrateSignificantdamagetoglazecoating(Wc6mm),4heavydamagetounglazedsubstratecausingflakingintheglazedsurface5Sameas4butwiththeformationofcracksinthetilesmainbodyleadingtostructuralfailureinapartofthetile(usuallyattheendofacutorwithin8mmofthetileedge).Therearetworeasonsforconductingsquareandcirculartesting(Fig.2(c)and(d):first,todeterminetheoptimummethodoflaser-beamintroductiontointernalcutprofiles;andsecondly,todetermineiftherewasanylimitationinthedimensionofthesizeofsquareorholecut.Ifnotcorrectlyintroduced,thelaserbeamwouldcauseaninternally-cutprofiletofailatthepointofintroduction,duetothebriefbutexcessivethermalgradientinducedfromcutting(i.e.thermalshock).Therefore,utilisingmethodsofbeamintroduc-tion,suchastrepanning,ontoaprofileenabledcom-plexgeometriestobeinvestigated.Whatalsobecameapparentduringtestingwastheimportanceofthepositionofbeamextractionfromthecutprofileandthepositionofthebeamstartingpointrelativetothegeometry,i.e.whetheritwasatacorneroronastraightedge.3.3.Multi-passandunderwatercuttingMulti-passcuttingwasbegunwithalowpower(P100W)laserbeam.Thefirstpassproducedawelldefinedb
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产后出血的预防与紧急处理流程
- 创业管理学打造完美创业计划书
- 初中历史七年级下册《第10课 蒙古族的兴起与元朝的建立》等(同步训练)
- 2025年江苏省南通市中考历史真题卷(含答案与解析)
- 一种针对传统汽车门环焊接方法的改进研究
- 用眼卫生与健康
- 浅谈当神的通灵人(乩童)的 优点与缺点
- 2025论文导师评语文档11
- TFT-LCD行业Particle管控和改善方法研究
- 工程项目中采购成本和物流成本管理研究
- 《回归分析》 课件 第7章 广义线性回归
- 《孟子三章-富贵不能淫》课件
- 装修工程 投标方案(技术方案)
- 基层卫生岗位练兵和技能竞赛试题及答案全科医疗组
- DL∕T 2568-2022 电力行业数字化审计平台功能构件与技术要求
- DL∕T 1844-2018 湿式静电除尘器用导电玻璃钢阳极检验规范
- 聚合物防水涂料外墙施工方案
- 提高五金品质计划书
- 《基础工程》 课件全套 刘汉东 第1-7章 绪论;天然地基上浅基础的常规设计- 特殊土地基
- 精神病监护人责任承诺书
- 居家养老服务中心投标方案
评论
0/150
提交评论