




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Zero-momentpointtrajectorymodelingofabipedwalkingrobotusinganadaptiveneuro-fuzzysystemD.Kim,S.-J.SeoandG.-T.ParkAbstract:Abipedalarchitectureishighlysuitableforarobotbuilttoworkinhumanenvironmentssincesucharobotwillfindavoidingobstaclesarelativelyeasytask.However,thecomplexdynamicsinvolvedinthewalkingmechanismmakethecontrolofsucharobotachallengingtask.Thezero-momentpoint(ZMP)trajectoryintherobotsfootisasignicantcriterionfortherobotsstabilityduringwalking.IftheZMPcouldbemeasuredon-linethenitbecomespossibletocreatestablewalkingconditionsfortherobotandherealsostablycontroltherobotbyusingthemeasuredZMP,values.ZMPdataismeasuredinreal-timesituationsusingabipedwalkingrobotandthisZMPdataisthenmodelledusinganadaptiveneuro-fuzzysystem(ANFS).Naturalwalkingmotionsonatlevelsurfacesandupanddowna10slopearemeasured.ThemodellingperformanceoftheANFSisoptimizedbychangingthemembershipfunctionsandtheconsequentpartofthefuzzyrules.TheexcellentperformancedemonstratedbytheANFSmeansthatitcannotonlybeusedtomodelrobotmovementsbutalsotocontrolactualrobots.1IntroductionThebipedalstructureisoneofthemostversatilesetupsforawalkingrobot.Abiped,robothasalmostthesamemovementmechanismsasahumananditabletooperateinenvironmentscontainingstairs,obstaclesetc.However,thedynamicsinvolvedarehighlynonlinear,complexandunstable.Thus,itisdifculttogenerateahuman-likewalkingmotion.Therealisationofhuman-likewalkingrobotsisanareaofconsiderableactivity14.Incontrasttoindustrialrobotmanipulators,theinteractionbetweenawalkingrobotandthegroundiscomplex.Theconceptofazero-momentpoint(ZMP)2hasbeenshowntobeusefulinthecontrolofthisinteraction.ThetrajectoryoftheZMPbeneaththerobotfootduringawalkisaftertakentobeanindicationofthestabilityofthewalk16.UsingtheZMPwecansynthesisethewalkingpatternsofbipedrobotsanddemonstrateawalkingmotionwithactualrobots.Thus,theZMPcriteriondictatesthedynamicstabilityofabipedrobot.TheZMPrepresentsthepointatwhichthegroundreactionforceistakentooccur.ThelocationoftheZMPcanbecalculatedusingamodeloftherobot.However,itispossiblethattherecanbealargeerrorbetweentheactualZMPvalueandthecalculatedvalue,duetodeviationsinthephysicalparametersbetweenthemathematicalmodelandtherealmachine.Thus,theactualZMPshouldbemeasuredespeciallyifitistobeusedinatoparametersacontrolmethodforstablewalking.InthisworkactualZMPdatatakenthroughoutthewholewalkingcycleareobtainedfromapracticalbipedwalingrobot.Therobotwillbetestedbothonaatoorandalsoon10slopes.Anadaptiveneuro-fuzzysystem(ANFS)willbeusedtomodeltheZMPtrajectorydatatherebyallowingitsusetocontrolacomplexrealbipedwalkingrobot.2Bipedwalkingrobot2.1DesignofthebipedwalkingrobotWehavedesignedandimplementedthebipedwalkingrobotshowninFig.1.Therobothas19joints.ThekeydimensionsoftherobotarealsoshowninFig.1.Theheightandthetotalweightareabout380mmand1700gincludingbatteries,respectively.Theweightoftherobotisminimisedbyusingaluminiuminitsconstruction.EachjointisdrivenbyaRCservomotorthatconsistsofaDCmotor,gearsandasimplecontroller.EachoftheRCservomotorsismountedinalinkedstructure.Thisstructureensuresthattherobotisstable(i.e.willnotfalldowneasily)andgivestherobotahuman-likeappearance.AblockdiagramofourrobotsystemisshowninFig.2.Outrobotisabletowalkatarateofonestep(48mm)every1.4sonaatoororanshallowslopes.ThespecicationsoftherobotarelistedinTable1.ThewalkingmotionsoftherobotareshowninFigs.36.-Figures3and4areshowfrontandsideviewsoftherobot,respectivelywhentherobotisonaatsurface.Figure5isasnapshotoftherobotwalkingdownaslopewhereasFig.6isasnapshotoftherobotwalkingupaslope.ThelocationsofthejointsduringmotionareshowninFig.7.ThemeasuredZMPtrajectoryisobtainedfromten-degree-of-freedom(DOF)dataasshowninFig.7.TwodegreesoffreedomareassignedtothehipsandanklesandoneDOFtoeachknee.Usingthesejointangles,acyclicwalkingpatternhasbeenrealised.Ourrobotisabletowalkcontinuouslywithoutfallingdown.Thejointanglesinthefour-stepmotionofourrobotaresummarisedintheAppendix.2.2ZMPmeasurementsystemTheZMPtrajectoryinarobotfootisasignicantcriterionforthestabilityofthewalk.Inmanystudies,ZMPcoordinatesarecomputedusingamodeloftherobotandinformationfromtheencodersonthejoints.However,weemployedamoredirectapproachwhichistousedatameasuredusingsensorsmountedontherobotsfeet.Thedistributionofthegroundisreactionforcebeneaththerobotsfootiscomplicated.However,atanypointPonthesoleofthefoottothereactioncanberepresentedbyaforceNandmomentM,asshowninFig.8.TheZMPissimplythecentreofthepressureofthefootontheground,andthemomentappliedbythegroundaboutthispointiszero.Inotherwords,thepointPonthegroundisthepointatwhichthenetmomentoftheinertialandgravityforceshasnocomponentalongtheaxesparalleltotheground1,7.Figure9illustratestheusedsensorsandtheirplacementonthesoleoftherobotsfoot.ThetypeofforcesensorusedinourexperimentsisaFlexiForceA201sensor8.Theyareattachedtothefourcornersoftheplatethatconstitutesthesoleofthefoot.SensorsignalsaredigitisedbyanADCboard,withasamplingtimeof10ms.Measurementsarecarriedoutinrealtime.Thefootpressureisobtainedbysummingtheforcesignals.UsingthesensordataitiseasytocalculatetheactualZMPvalues.TheZMPsinthelocalfootcoordinateframearecomputedusing(1).Whereeachfiistheforceatasensorriisthesensorpositionwhichisavector.ThesearedenedinFig.10.Inthegure,Oistheoriginofthefootcoordinateframewhichislocatedatthelower-left-handcornertheleftfoot.ExperimentalresultsareshowninFigs.1116.Figures11,13and15showthex-coordinateandy-coordinateoftheactualZMPpositionsforthefour-stepmotionoftherobotwalkingonaatoorandalsodownandupaslopeof10,respectively.Figures12,14and16showntheZMPtrajectoryoftheone-stepmotionoftherobotusingtheactualZMPpositionsshowninFigs.11,13and15.Asshowninthetrajectories,theZMPsexistinarectangulardomainshownbyasolidline.Thus,thepositionsoftheZMPsarewithintherobotsfootandhencetherobotisstable.3ZMPtrajectorymodellingInmanyscienticproblemsanessentialsteptowardstheirsolutionistoaccomplishthemodellingofthesystemunderinvestigation.Theimportantroleofmodellingistoestablishempiricalrelationshipsbetweenobservedvariables.Thecomplexdynamicsinvolvedinmakingarobotwalkmakethecontroloftherobotcontrolachallengingtask.However,ifthehighlynonlinearandcomplexdynamicscanbecloselyproducedthenthismodellingcanbeusedinthecontroloftherobot.Inaddition,modelling,canevenbeusedinrobustintelligentcontroltominimisedisturbancesandnoise.3.1ANFSFuzzymodellingtechniqueshavebecomeanactiveresearchareainrecentyearsbecauseoftheirsuccessfulapplicationtocomplex,ill-denedanduncertainsystemsinwhichconventionalmathematicalmodelsfailtogivesatisfactoryresults9.InthislightweintendtouseasystemtomodeltheZMPtrajectory.Thefuzzyinferencesystemisapopularcomputingframeworkthatisbasedontheconceptsoffuzzysettheory,fuzzyif-thenrules,andfuzzyreasoning.WewillusetheSugenofuzzymodelinwhichsinceeachrulehasacrispoutput,theoveralloutputisobtainedviaaweightedaverage,thusavoidingthetime-consumingprocessofdefuzzication.Whenweconsiderfuzzyrulesinthefuzzymodel,theconsequentpartcanbeexpressedbyeitheraconstantoralinearpolynomial.ThedifferentformsofpolynomialsthatcanbeusedinthefuzzysystemaresummarisedinTable2.Themodellingperformancedependsonthetypeofconsequentpolynomialusedinthemodelling.Moreover,wecanexploitvariousformsofmembershipfunctions(MFs),suchastriangularandGaussian,forthefuzzysetinthepremisepartofthefuzzyrules.Theseareanotherfactorthatcontributestotheexibilityoftheproposedapproach.ThetypesofthepolynomialareasfollowsAblockdiagramofthemodellingsystemisshowninFig.17.Theproposedmethodisrstusedtomodelandthencontrolapracticalbipedwalkingrobot.Toobtainthefuzzyrulesforthefuzzymodellingsystemwemustnotesthatthenonlinearsystemtobeidentiedisabipedwalkingrobotwithteninputvariablesandeachinputvariableshastwofuzzysets,respectively.Forthefuzzymodel,theif-thenrulesareasfollows:whereAi,Bi,,Jiinthepremisepartoftheruleshavelinguisticvalues(suchassmallorbig)associatedwiththeinputvariable,x1,x2,x10;respectively.Fj(x1,x2,x10);istheconstant,orrst-orderconsequentpolynomialfunctionforthejthrule.AsdepictedinFig.18,twotypesofMFswereexamined.OneisthetriangularandtheotherisGaussian.Figure19isanadaptiveneuro-fuzzyinferencesystem10architecturethatisequivalenttotheten-inputfuzzymodelconsideredhere,inwhicheachinputisassumedtohaveoneofthetwoMFsshowninFig.18.NodeslabelledPgivetheproductofalltheincomingsignalsandtheselabelledNcalculatetheratioofacertainrulesringstrengthtothesumofalltherulesringstrengths.ParametervariationinANFISisoccuredusingeitheragradientdescentalgorithmorarecursiveleast-squaresestimationalgorithmtoadjustboththepremiseandconsequentparametersiteratively.However,wedonotusethecomplexhybridlearningalgorithmbutinsteadusethegeneralleast-squaresestimationalgorithmandonlydeterminethecoefcientsintheconsequentpolynomialfunction.3.2SimulationresultsApproximatelymodelswereconstructedusingtheANFS.Thenaccuracywasquantiedintermsoftheremean-squarederror(MSE),values.TheANFSwasappliedtomodeltheZMPtrajectoryofabipedwalkingrobotusingdatameasuredfromoutrobot.TheperformanceoftheANFSwasoptimisedbywaryingtheMFandconsequenttypeinthefuzzyrule.ThemeasuredZMPtrajectorydatafromourrobot(showninFigs.3241AintheAppendix)areusedastheprocessparameters.WhentriangularandGaussianMFsareusedinthepremisepartandaconstantintheconsequentpartthen,thecorrespondingMSEvaluesarelistedinTable3.WehaveplattedourresultsinFigs.2025.ThegeneratedZMPpositionsfromtheANFSareshowninFigs.20,22and24foraatleveloor,walkingdowna10slopeandwalkingupa10slope,respectively.InFigs.21,23and25,wecanseethecorrespondingZMPtrajectorieswhicharegeneratedfromtheANFS.Forsimplicity,theprocessparameterofbothkneescanbeignored.Asaresult,wecanreducethedimensionofthefuzzyrulesandtherebylowerthecomputationalburden.InthiscasethesimulationconditionsoftheANFSanditscorrespondingMSEvaluesaregiveninTable4.FromtheFiguresandTablesthatpresentthesimu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西梧州图书馆招聘试题带答案分析2024年
- 2024-2025学年“安全生产事故隐患排查”知识竞赛题库及参考答案详解
- 2024“安全生产事故隐患排查”知识竞赛检测卷附答案详解
- 平抛物体运动教学设计
- 国开电大果树栽培技术(南方本)形考任务第123次作业答案
- 2月大田栽培管理题库含参考答案
- 2024年10月矿山安全员习题含参考答案
- 胎儿护理远程医疗试卷
- 船员职业健康课件
- 4.2 隔空吸铁 教案 课件2025大象版科学一年级下册
- 光伏电站运维安全操作规程
- 2025春季学期国开电大专科《管理学基础》期末纸质考试总题库
- 物流仓储设备选型与配置规范
- T-BSRS 124-2024 伴生放射性矿开发利用场地土壤放射性污染调查和修复监测技术规范
- (2025)全国交管12123学法减分考试题库附答案
- 虚拟现实行业标准-深度研究
- T-ZHCA 025-2023 化妆品抗氧化人体测试方法
- 安保主管上半年工作总结
- 中山市招商服务中心2025年上半年招考人员易考易错模拟试题(共500题)试卷后附参考答案
- 2022年9月国家开放大学专科《高等数学基础》期末纸质考试试题及答案
- 包皮环切术的健康宣教
评论
0/150
提交评论