




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Zero-momentpointtrajectorymodelingofabipedwalkingrobotusinganadaptiveneuro-fuzzysystemD.Kim,S.-J.SeoandG.-T.ParkAbstract:Abipedalarchitectureishighlysuitableforarobotbuilttoworkinhumanenvironmentssincesucharobotwillfindavoidingobstaclesarelativelyeasytask.However,thecomplexdynamicsinvolvedinthewalkingmechanismmakethecontrolofsucharobotachallengingtask.Thezero-momentpoint(ZMP)trajectoryintherobotsfootisasignicantcriterionfortherobotsstabilityduringwalking.IftheZMPcouldbemeasuredon-linethenitbecomespossibletocreatestablewalkingconditionsfortherobotandherealsostablycontroltherobotbyusingthemeasuredZMP,values.ZMPdataismeasuredinreal-timesituationsusingabipedwalkingrobotandthisZMPdataisthenmodelledusinganadaptiveneuro-fuzzysystem(ANFS).Naturalwalkingmotionsonatlevelsurfacesandupanddowna10slopearemeasured.ThemodellingperformanceoftheANFSisoptimizedbychangingthemembershipfunctionsandtheconsequentpartofthefuzzyrules.TheexcellentperformancedemonstratedbytheANFSmeansthatitcannotonlybeusedtomodelrobotmovementsbutalsotocontrolactualrobots.1IntroductionThebipedalstructureisoneofthemostversatilesetupsforawalkingrobot.Abiped,robothasalmostthesamemovementmechanismsasahumananditabletooperateinenvironmentscontainingstairs,obstaclesetc.However,thedynamicsinvolvedarehighlynonlinear,complexandunstable.Thus,itisdifculttogenerateahuman-likewalkingmotion.Therealisationofhuman-likewalkingrobotsisanareaofconsiderableactivity14.Incontrasttoindustrialrobotmanipulators,theinteractionbetweenawalkingrobotandthegroundiscomplex.Theconceptofazero-momentpoint(ZMP)2hasbeenshowntobeusefulinthecontrolofthisinteraction.ThetrajectoryoftheZMPbeneaththerobotfootduringawalkisaftertakentobeanindicationofthestabilityofthewalk16.UsingtheZMPwecansynthesisethewalkingpatternsofbipedrobotsanddemonstrateawalkingmotionwithactualrobots.Thus,theZMPcriteriondictatesthedynamicstabilityofabipedrobot.TheZMPrepresentsthepointatwhichthegroundreactionforceistakentooccur.ThelocationoftheZMPcanbecalculatedusingamodeloftherobot.However,itispossiblethattherecanbealargeerrorbetweentheactualZMPvalueandthecalculatedvalue,duetodeviationsinthephysicalparametersbetweenthemathematicalmodelandtherealmachine.Thus,theactualZMPshouldbemeasuredespeciallyifitistobeusedinatoparametersacontrolmethodforstablewalking.InthisworkactualZMPdatatakenthroughoutthewholewalkingcycleareobtainedfromapracticalbipedwalingrobot.Therobotwillbetestedbothonaatoorandalsoon10slopes.Anadaptiveneuro-fuzzysystem(ANFS)willbeusedtomodeltheZMPtrajectorydatatherebyallowingitsusetocontrolacomplexrealbipedwalkingrobot.2Bipedwalkingrobot2.1DesignofthebipedwalkingrobotWehavedesignedandimplementedthebipedwalkingrobotshowninFig.1.Therobothas19joints.ThekeydimensionsoftherobotarealsoshowninFig.1.Theheightandthetotalweightareabout380mmand1700gincludingbatteries,respectively.Theweightoftherobotisminimisedbyusingaluminiuminitsconstruction.EachjointisdrivenbyaRCservomotorthatconsistsofaDCmotor,gearsandasimplecontroller.EachoftheRCservomotorsismountedinalinkedstructure.Thisstructureensuresthattherobotisstable(i.e.willnotfalldowneasily)andgivestherobotahuman-likeappearance.AblockdiagramofourrobotsystemisshowninFig.2.Outrobotisabletowalkatarateofonestep(48mm)every1.4sonaatoororanshallowslopes.ThespecicationsoftherobotarelistedinTable1.ThewalkingmotionsoftherobotareshowninFigs.36.-Figures3and4areshowfrontandsideviewsoftherobot,respectivelywhentherobotisonaatsurface.Figure5isasnapshotoftherobotwalkingdownaslopewhereasFig.6isasnapshotoftherobotwalkingupaslope.ThelocationsofthejointsduringmotionareshowninFig.7.ThemeasuredZMPtrajectoryisobtainedfromten-degree-of-freedom(DOF)dataasshowninFig.7.TwodegreesoffreedomareassignedtothehipsandanklesandoneDOFtoeachknee.Usingthesejointangles,acyclicwalkingpatternhasbeenrealised.Ourrobotisabletowalkcontinuouslywithoutfallingdown.Thejointanglesinthefour-stepmotionofourrobotaresummarisedintheAppendix.2.2ZMPmeasurementsystemTheZMPtrajectoryinarobotfootisasignicantcriterionforthestabilityofthewalk.Inmanystudies,ZMPcoordinatesarecomputedusingamodeloftherobotandinformationfromtheencodersonthejoints.However,weemployedamoredirectapproachwhichistousedatameasuredusingsensorsmountedontherobotsfeet.Thedistributionofthegroundisreactionforcebeneaththerobotsfootiscomplicated.However,atanypointPonthesoleofthefoottothereactioncanberepresentedbyaforceNandmomentM,asshowninFig.8.TheZMPissimplythecentreofthepressureofthefootontheground,andthemomentappliedbythegroundaboutthispointiszero.Inotherwords,thepointPonthegroundisthepointatwhichthenetmomentoftheinertialandgravityforceshasnocomponentalongtheaxesparalleltotheground1,7.Figure9illustratestheusedsensorsandtheirplacementonthesoleoftherobotsfoot.ThetypeofforcesensorusedinourexperimentsisaFlexiForceA201sensor8.Theyareattachedtothefourcornersoftheplatethatconstitutesthesoleofthefoot.SensorsignalsaredigitisedbyanADCboard,withasamplingtimeof10ms.Measurementsarecarriedoutinrealtime.Thefootpressureisobtainedbysummingtheforcesignals.UsingthesensordataitiseasytocalculatetheactualZMPvalues.TheZMPsinthelocalfootcoordinateframearecomputedusing(1).Whereeachfiistheforceatasensorriisthesensorpositionwhichisavector.ThesearedenedinFig.10.Inthegure,Oistheoriginofthefootcoordinateframewhichislocatedatthelower-left-handcornertheleftfoot.ExperimentalresultsareshowninFigs.1116.Figures11,13and15showthex-coordinateandy-coordinateoftheactualZMPpositionsforthefour-stepmotionoftherobotwalkingonaatoorandalsodownandupaslopeof10,respectively.Figures12,14and16showntheZMPtrajectoryoftheone-stepmotionoftherobotusingtheactualZMPpositionsshowninFigs.11,13and15.Asshowninthetrajectories,theZMPsexistinarectangulardomainshownbyasolidline.Thus,thepositionsoftheZMPsarewithintherobotsfootandhencetherobotisstable.3ZMPtrajectorymodellingInmanyscienticproblemsanessentialsteptowardstheirsolutionistoaccomplishthemodellingofthesystemunderinvestigation.Theimportantroleofmodellingistoestablishempiricalrelationshipsbetweenobservedvariables.Thecomplexdynamicsinvolvedinmakingarobotwalkmakethecontroloftherobotcontrolachallengingtask.However,ifthehighlynonlinearandcomplexdynamicscanbecloselyproducedthenthismodellingcanbeusedinthecontroloftherobot.Inaddition,modelling,canevenbeusedinrobustintelligentcontroltominimisedisturbancesandnoise.3.1ANFSFuzzymodellingtechniqueshavebecomeanactiveresearchareainrecentyearsbecauseoftheirsuccessfulapplicationtocomplex,ill-denedanduncertainsystemsinwhichconventionalmathematicalmodelsfailtogivesatisfactoryresults9.InthislightweintendtouseasystemtomodeltheZMPtrajectory.Thefuzzyinferencesystemisapopularcomputingframeworkthatisbasedontheconceptsoffuzzysettheory,fuzzyif-thenrules,andfuzzyreasoning.WewillusetheSugenofuzzymodelinwhichsinceeachrulehasacrispoutput,theoveralloutputisobtainedviaaweightedaverage,thusavoidingthetime-consumingprocessofdefuzzication.Whenweconsiderfuzzyrulesinthefuzzymodel,theconsequentpartcanbeexpressedbyeitheraconstantoralinearpolynomial.ThedifferentformsofpolynomialsthatcanbeusedinthefuzzysystemaresummarisedinTable2.Themodellingperformancedependsonthetypeofconsequentpolynomialusedinthemodelling.Moreover,wecanexploitvariousformsofmembershipfunctions(MFs),suchastriangularandGaussian,forthefuzzysetinthepremisepartofthefuzzyrules.Theseareanotherfactorthatcontributestotheexibilityoftheproposedapproach.ThetypesofthepolynomialareasfollowsAblockdiagramofthemodellingsystemisshowninFig.17.Theproposedmethodisrstusedtomodelandthencontrolapracticalbipedwalkingrobot.Toobtainthefuzzyrulesforthefuzzymodellingsystemwemustnotesthatthenonlinearsystemtobeidentiedisabipedwalkingrobotwithteninputvariablesandeachinputvariableshastwofuzzysets,respectively.Forthefuzzymodel,theif-thenrulesareasfollows:whereAi,Bi,,Jiinthepremisepartoftheruleshavelinguisticvalues(suchassmallorbig)associatedwiththeinputvariable,x1,x2,x10;respectively.Fj(x1,x2,x10);istheconstant,orrst-orderconsequentpolynomialfunctionforthejthrule.AsdepictedinFig.18,twotypesofMFswereexamined.OneisthetriangularandtheotherisGaussian.Figure19isanadaptiveneuro-fuzzyinferencesystem10architecturethatisequivalenttotheten-inputfuzzymodelconsideredhere,inwhicheachinputisassumedtohaveoneofthetwoMFsshowninFig.18.NodeslabelledPgivetheproductofalltheincomingsignalsandtheselabelledNcalculatetheratioofacertainrulesringstrengthtothesumofalltherulesringstrengths.ParametervariationinANFISisoccuredusingeitheragradientdescentalgorithmorarecursiveleast-squaresestimationalgorithmtoadjustboththepremiseandconsequentparametersiteratively.However,wedonotusethecomplexhybridlearningalgorithmbutinsteadusethegeneralleast-squaresestimationalgorithmandonlydeterminethecoefcientsintheconsequentpolynomialfunction.3.2SimulationresultsApproximatelymodelswereconstructedusingtheANFS.Thenaccuracywasquantiedintermsoftheremean-squarederror(MSE),values.TheANFSwasappliedtomodeltheZMPtrajectoryofabipedwalkingrobotusingdatameasuredfromoutrobot.TheperformanceoftheANFSwasoptimisedbywaryingtheMFandconsequenttypeinthefuzzyrule.ThemeasuredZMPtrajectorydatafromourrobot(showninFigs.3241AintheAppendix)areusedastheprocessparameters.WhentriangularandGaussianMFsareusedinthepremisepartandaconstantintheconsequentpartthen,thecorrespondingMSEvaluesarelistedinTable3.WehaveplattedourresultsinFigs.2025.ThegeneratedZMPpositionsfromtheANFSareshowninFigs.20,22and24foraatleveloor,walkingdowna10slopeandwalkingupa10slope,respectively.InFigs.21,23and25,wecanseethecorrespondingZMPtrajectorieswhicharegeneratedfromtheANFS.Forsimplicity,theprocessparameterofbothkneescanbeignored.Asaresult,wecanreducethedimensionofthefuzzyrulesandtherebylowerthecomputationalburden.InthiscasethesimulationconditionsoftheANFSanditscorrespondingMSEvaluesaregiveninTable4.FromtheFiguresandTablesthatpresentthesimu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/SZMS 0003-2024电动汽车超级充电设备计量验证技术规范
- XX学校情绪管理主题班会你可以生气但别越想越气
- 白酒行业市场前景及投资研究报告:深度调整期白酒底部机会
- 高一细胞核课件
- 高一物理必修课件
- 高一化学全套讲解课件
- 离婚后财产清算及债务承担补充合同
- 石家庄租车合同车辆使用过程中责任归属界定
- 《婚姻裂痕小说章节:情感纠纷离婚协议》
- 离婚协议书范例:财产分割与子女监护权协议样板
- 以气体制备为主体的实验-2025年高考化学专项复习(解析版)
- 护理工作中的冲突与管理
- 北京地区建筑地基基础勘察设计准则
- 《社区调查报告》课件
- 2025-2025学年外研版七年级英语上册教学计划
- 《胸腔穿刺术》课件
- 《人才选用育留》课件
- 农村土地使用权转让协议书
- 任务1 混合动力汽车动力系统基本组成与原理
- 富血小板血浆(PRP)临床实践与病例分享课件
- 华为HCSA-Presales-IT售前认证备考试题及答案
评论
0/150
提交评论