




文档简介
UNSTEADYFLOWANALYSISINHYDRAULICTURBOMACHINERYALBERTRUPRECHTINSTITUTEOFFLUIDMECHANICSANDHYDRAULICMACHINERYUNIVERSITYOFSTUTTGART,GERMANYABSTRACTINTHEFIELDOFHYDRAULICMACHINERYCOMPUTATIONALFLUIDDYNAMICSCFDISROUTINELYUSEDTODAYINRESEARCHANDDEVELOPMENTASWELLASINDESIGNATTHATNEARLYALWAYSSTEADYSTATESIMULATIONSAREAPPLIEDINTHISPAPER,HOWEVER,UNSTEADYSIMULATIONSARESHOWNFORDIFFERENTEXAMPLESTHEPRESENTEDEXAMPLESCONTAINAPPLICATIONSWITHSELFEXCITEDUNSTEADINESS,EGVORTEXSHEDDINGORVORTEXROPEINTHEDRAFTTUBE,ASWELLASAPPLICATIONSWITHEXTERNALLYFORCEDUNSTEADINESSBYCHANGINGORMOVINGGEOMETRIES,EGROTORSTATORINTERACTIONSFORTHESEEXAMPLESTHEREQUIREMENTS,POTENTIALANDLIMITATIONSOFUNSTEADYFLOWANALYSISASSESSEDPARTICULARLYTHEDEMANDSONTHETURBULENCEMODELSANDTHENECESSARYCOMPUTATIONALEFFORTSAREDISCUSSEDINTRODUCTIONFORMORETHANADECADECOMPUTATIONALFLUIDDYNAMICSCFDISUSEDINTHEFIELDOFHYDRAULICMACHINERYINRESEARCHANDDEVELOPMENTASWELLASINTHEDAILYDESIGNBUSINESSEARLYSUCCESSFULDEMONSTRATIONSAREGIVENEGINTHEGAMMWORKSHOP1THEAPPLICATIONSARESTEADILYINCREASINGTHISISEXPRESSEDINFIG1,WHERETHEPERCENTAGEOFPAPERSDEALINGWITHCFDISSHOWN,WHICHWEREPRESENTEDATTHEIAHRSYMPOSIUMONHYDRAULICMACHINERYANDCAVITATIONSTARTINGWITHQ3DEULERAND3DEULERTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSTOGETHERWITHAROBUSTMODELOFTURBULENCEUSUALLYTHEKMODELISUSEDITISCOMMONPRACTICETOAPPLYSTEADYSTATESIMULATIONS,THEUNSTEADINESSINCONSEQUENCEOFTHEROTORSTATORINTERACTIONSISADDRESSEDBYAVERAGINGPROCEDURESBYTHISMETHODACCURATERESULTSAREOBTAINEDFORMANYQUESTIONSINTHEDESIGNOFCOMPONENTSHOWEVER,DIFFERENTPROBLEMSINTURBOMACHINERYARISEFROMUNSTEADYFLOWPHENOMENAINORDERTOGETINFORMATIONONTHISPHENOMENAORSOLUTIONSTOTHEPROBLEMSANUNSTEADYFLOWANALYSISISNECESSARYTHISREQUIRESAMUCHHIGHERCOMPUTATIONALEFFORT,ROUGHLYAFACTOR510COMPAREDTOSTEADYSTATE,DEPENDINGOFTHEPROBLEMANDOFTHEDEGREEOFMODELINGASSUMPTIONSWITHTODAYSCOMPUTERSANDSOFTWARE,HOWEVER,UNSTEADYPROBLEMSCANBESOLVEDFIG1PERCENTAGEOFPAPERSATTHEIAHRSYMPOSIUMDEALINGWITHCFDTWOMAJORGROUPSOFUNSTEADYPROBLEMSCANBEDISTINGUISHEDTHEFIRSTGROUPAREFLOWSWITHANEXTERNALLYFORCEDUNSTEADINESSTHISCANBECAUSEDBYUNSTEADYBOUNDARYCONDITIONSORBYCHANGINGOFTHEGEOMETRYWITHTIMEEXAMPLESARETHECLOSUREOFAVALVE,THECHANGEOFTHEFLOWDOMAININAPISTONPUMP,ORTHEROTORSTATORINTERACTIONSTHESECONDGROUPAREFLOWSWITHSELFEXCITEDUNSTEADINESS,WHICHAREEGTURBULENTMOTION,VORTEXSHEDDINGKARMANVORTEXSTREETORUNSTEADYVORTEXBEHAVIOREGVORTEXROPEINADRAFTTUBEHERETHEUNSTEADINESSISOBTAINEDWITHOUTANYCHANGEOFTHEBOUNDARYCONDITIONSOROFTHEGEOMETRYTHERECANALSOOCCURACOMBINATIONOFBOTHGROUPSEGFLOWINDUCEDVIBRATIONS,CHANGEOFGEOMETRYCAUSEDBYVORTEXSHEDDINGALLTHESEPHENOMENACANTAKEPLACEINATURBINEORPUMPANDREQUIREDIFFERENTSOLUTIONPROCEDURESBASICEQUATIONSANDNUMERICALPROCEDURESINHYDRAULICTURBOMACHINERYTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSFORANINCOMPRESSIBLEFLOWAREAPPLIEDCOMPAREDTOTHESTEADYSTATETHEMOMENTUMEQUATIONSCONTAINANADDITIONALTERMPRESCRIBINGTHEUNSTEADYCHANGE0XUXUXXP1XUUTUIJIJJIJIJIJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE61IJARETHEREYNOLDSSTRESSES,WHICHARECALCULATEDFROMTHETURBULENCEMODELTHECONTINUITYEQUATIONFORINCOMPRESSIBLEFLOWREADS0XUII2ANDDOESNOTCONTAINATIMEDEPENDINGTERMITHASTOBEEMPHASIZEDTHATTHEEQUATIONS1AND2BEHAVESDIFFERENTINTIMEANDINSPACEINSPACETHEYSHOWELLIPTICBEHAVIOR,THEREFORETHEYREQUIREBOUNDARYCONDITIONSONALLSURFACESINTIME,HOWEVER,THEYAREOFPARABOLICNATURE,WHICHMEANTHATTHEREISNOFEEDBACKFROMTHEFUTURETOTHEPRESENTORPASTBECAUSEOFTHATNOBOUNDARYCONDITIONSAREREQUIREDINTHEFUTURETHISISSCHEMATICALLYSHOWNINFIG2THISISTHEREASON,WHYTHETIMEDISCRETIZATIONISGENERALLYCARRIEDOUTINADIFFERENTWAYTHANTHESPATIALDISCRETIZATIONFORSPATIALDISCRETIZATIONUSUALLYAFINITEVOLUMEORAFINITEELEMENTAPPROXIMATIONISAPPLIEDFORTIMEDISCRETIZATION,HOWEVER,MOSTLYTHEFINITEDIFFERENCEMETHODISUSEDAFEWOFTHEMOSTPOPULARFINITEDIFFERENCEAPPROXIMATIONSARESHOWNINFIG3INADDITIONEXPLICITMULTIPOINTSCHEMESOFRUNGEKUTTATYPEORPREDICTORCORRECTORSCHEMESAREOFTENAPPLIEDFIG2BOUNDARYANDINITIALCONDITIONSFIG3TIMEDISCRETIZATIONSCHEMESITHASTOBEMENTIONEDTHATTHEEXPLICITMETHODSREQUIREARESTRICTIONOFTHETIMESTEPACCORDINGTOSTABILITYCRITERIACFLCRITERIA,WHICHDEPENDONTHELOCALVELOCITIESANDTHELOCALGRIDSIZETHEIMPLICITMETHODS,INCONTRARY,AREALWAYSSTABLE,THEREISNORESTRICTIONOFTHETIMESTEPITCANBECHOSENONLYACCORDINGTOTHEPHYSICALREQUIREMENTSINORDERTOOBTAINACCURATESOLUTIONSTHETIMEDISCRETIZATIONSHOULDBEATLEASTOF2NDORDER,SIMILARTOTHESPATIALDISCRETIZATIONOTHERWISEEXTREMELYSMALLTIMESTEPSWOULDBEREQUIREDTHEABOVEDESCRIPTIONOFTHEFLOWINTHEEULERIANCOORDINATESCANBEAPPLIEDFORUNSTEADYBOUNDARYCONDITIONPROBLEMSASWELLASFORSELFEXCITEDUNSTEADINESSHOWEVER,TOEXPRESSPROBLEMSWITHMOVINGGEOMETRIESINEULERIANCOORDINATESISMOREDIFFICULTATTHEMOVINGBOUNDARYALAGRANGIANDESCRIPTIONCANBEAPPLIEDVERYEASILYSINCETHEFLUIDPARTICLESCANBETRACEDBYTHISMETHODCOMBININGTHESETWOMETHODSANARBITRARYLAGRANGIANEULERIANALEMETHODCANBEUTILIZEDTHISMETHODISSUITABLEFORTHESOLUTIONOFPROBLEMSWITHMOVINGBOUNDARIESINTHEALEMETHODTHEREFERENCECOORDINATESCANBECHOSENARBITRARYINTHISREFERENTIALCOORDINATESYSTEMTHEMATERIALDERIVATIVECANBEDESCRIBEDASJEIJJRILIXT,XFWUTT,XFTT,XF3WITHTHECOORDINATESSCOODDINATEEULERIANXSCOODDINATELREFERENTIAXSCOODDINATELAGRANGIANXEIRILIANDWIREFERENCEVELOCITYTHEMOMENTUMEQUATIONSINTHEALEFORMULATIONCANBEWRITTENASFOLLOWS0XUXUXXP1XUWUTUIJIJJIJIJIJJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE64THEMOVINGOFTHEREFERENCESYSTEMWICANBECHOSENARBITRARYIFWIISEQUALTOZEROONEGETSTHEEULERIANDESCRIPTION,ONTHEOTHERHAND,IFWIISEQUALTOTHEVELOCITYOFTHEFLUIDPARTICLETHELAGRANGIANFORMULATIONISOBTAINEDTHECONVECTIVETERMINTHETRANSPORTEQUATIONSFORSCALARQUANTITIESCHANGESINTHESAMEWAYTHANINTHEMOMENTUMEQUATIONSTHISAPPLIESALSOTOTHEKANDEQUATIONSTHENUMERICALREALIZATIONOFMOVINGORCHANGINGGRIDSCANEITHERBEOBTAINEDBYDEFORMATIONOFANEXISTINGMESHINEACHTIMESTEPFORLARGEDEFORMATIONSTHISREQUIRESANAUTOMATICGRIDSMOOTHINGALGORITHMOREVENANAUTOMATICREMESHINGAFTERAFEWTIMESTEPSANOTHERMETHODISTHEUSEOFDIFFERENTEMBEDDEDGRIDS,WHICHCANMOVEAGAINSTEACHOTHERINTHISCASEASLIDINGINTERFACEBETWEENTHENONMATCHINGGRIDSISREQUIREDTHISPROCEDUREISSCHEMATICALLYSHOWNINFIG4FORTWODIFFERENTPROBLEMS,NAMELYROTORSTATORINTERACTIONANDVIBRATIONOFACYLINDERINAFLUIDINFENFLOSS,THECOMPUTERCODEDEVELOPEDATOURINSTITUTEATUNIVERSITYOFSTUTTGART,THESECONDAPPROACHISAPPLIEDTHEINTERFACEBETWEENTHEGRIDSISREALIZEDBYMEANSOFDYNAMICBOUNDARYCONDITIONS,WHEREDOWNSTREAMTHENODEVALUESVELOCITIESANDTURBULENCEQUANTITIESAREPRESCRIBEDANDUPSTREAMPRESSUREANDFLUXESAREINTRODUCEDASSURFACECONDITIONSABRIEFOVERVIEWONTHENUMERICALPROCEDURESISGIVENIN2,FORMOREDETAILSTHEREADERISREFERREDTO3,4ONEPOINTHASTOBEEMPHASIZEDSINCETHEUNSTEADYSIMULATIONSREQUIREASEVEREINCREASEOFCOMPUTATIONALEFFORTCOMPAREDTOSTEADYSTATESOLUTIONS,PARALLELPROCEDURESARENECESSARYINTHISCASETHEALEFORMULATIONWITHMOVINGGRIDSLEADSTOADYNAMICCHANGEOFCOMMUNICATIONBECAUSETHELOCATIONOFEXCHANGEBOUNDARIESVARIESWITHTIMEANDCANTHEREFORECHANGETHECOMPUTATIONALDOMAINOFTHEPROCESSORS,SEE2INFENFLOSSANIMPLICITSOLUTIONALGORITHMISAPPLIEDASALREADYMENTIONEDTHISHASTHEADVANTAGETHATTHEREISNOSTABILITYLIMITATIONFORTHETIMESTEPTHEOVERALLSOLUTIONPROCEDUREINCLUDINGTHEFLUIDSTRUCTUREINTERACTIONISSHOWNINFIG5IFTHEMOVEMENTOFTHEGRIDDOESNOTDEPENDONTHEFLOWSITUATIONTHEFLUIDSTRUCTURELOOPVANISHESFIG5FLOWCHARTOFFENFLOSSINCLUDINGFLUIDSTRUCTUREINTERACTIONFIG4MOVINGGRIDEXAMPLESAPPLICATIONSINTHEFOLLOWINGSELECTEDAPPLICATIONSARESHOWNANDTHESPECIFICPROBLEMSFORTHISEXAMPLESAREDISCUSSEDFIRSTLYSOMECASESWITHSELFEXCITEDUNSTEADINESSAREPRESENTEDVORTEXSHEDDINGATTHEINLETOFAPOWERPLANTPROBLEMDESCRIPTIONTHEFIRSTEXAMPLESHOWSTHEFLOWBEHAVIORATTHEINLETOFALOWHEADPOWERPLANTITISANEXISTINGPLANTWITHTWOIDENTICALBULBTURBINESDURINGOPERATIONTHEINNERTURBINESHOWEDSEVEREBEARINGPROBLEMSWHEREASTHEOUTERTURBINEOPERATESSMOOTHLYTHEREASONWASEXPECTEDTOBEVORTEXSHEDDINGATTHEINLETBYNUMERICALANALYSISTHEPROBLEMWASINVESTIGATEDANDITWASTRIEDTOFINDASOLUTIONTOTHEPROBLEMINFIG6THEGEOMETRYISSHOWNTHECALCULATIONHASBEENCARRIEDOUTIN2DASWELLASIN3DFIRSTLYITWASTRIEDTOCARRYOUTASTEADYSTATESIMULATION,HOWEVER,NOCONVERGEDSOLUTIONCOULDBEOBTAINEDTHEREFOREANUNSTEADYSIMULATIONWASUNDERTAKENTHERESULTSINDICATEASTRONGUNSTEADYMOTIONINFIG7THEVELOCITYDISTRIBUTIONATACERTAINTIMESTEPISPRESENTEDCLEARLYVISIBLEARETHEVORTICES,SHEDDINGFROMTHEINLETANDMOVINGDOWNSTREAMINTOTHEINNERTURBINETHISISTHEREASONOFTHEDESTRUCTIONOFTHEBEARINGSINORDERTOIMPROVETHEFLOWBEHAVIORAMODIFIEDGEOMETRYWASSUGGESTEDTHISGEOMETRY,SHOWNINFIG8,HASBEENBUILTINTHEMEANTIMETHEREARENOLONGERPROBLEMSWITHVORTEXSHEDDINGFURTHERDETAILSABOUTTHISAPPLICATIONCANBEFOUNDIN5,6DISCUSSIONTHEPHYSICALUNSTEADINESSOFTHEFLOWHASBEENINDICATEDBYTHEINABILITYTOACHIEVEACONVERGEDSTEADYSTATESOLUTIONTHISISVERYOFTENTHECASEWITHFLOWSSHOWINGVORTEXSHEDDINGINREALITYFIG6GEOMETRYOFPOWERPLANTINLETFIG7INSTANTANEOUSVELOCITYVECTORS,VORTEXSHEDDINGATTHEINLETPIERFIG8MODIFIEDGEOMETRYANECESSARYCONDITIONFORTHATIS,THATTHENUMERICALSCHEMEDOESNOTCONTAINSERIOUSARTIFICIALDIFFUSION,WHICHWOULDSUPPRESSTHEUNSTEADYMOTIONTHESAMEAPPLIESTOTHEUSEDTURBULENCEMODELTHESTANDARDKMODELUSUALLYPRODUCESATOOHIGHEDDYVISCOSITY,ESPECIALLYINSWIRLINGFLOWS,ANDTHEREFOREITVERYOFTENSUPPRESSESTHEUNSTEADYMOTIONTHISWILLBEDISCUSSEDAGAININOTHERAPPLICATIONSFORMANYCASESATLEASTASTREAMLINECURVATURECORRECTIONOREVENANONLINEAREDDYVISCOSITYFORMULATIONISNECESSARYINORDERTOAVOIDATOOHIGHTURBULENCEPRODUCTIONANOTHERPOINTINTURBULENCEMODELINGISTHETREATMENTOFTHENEARWALLFLOWITISWELLKNOWNTHATTHEUSEOFWALLFUNCTIONSUSUALLYTENDSTOPREDICTAFLOWSEPARATIONTOOLATEINCASEOFVORTEXSHEDDINGTHISCANCAUSEASEVEREREDUCTIONOFTHEVORTEXSIZESOREVENACOMPLETESUPPRESSIONOFTHEVORTICESMOREACCURATERESULTSCANBEOBTAINEDBYSOLVINGTHEFLOWUPTOTHEWALLIFPOSSIBLEBYALOWREYNOLDSORATWOLAYERMODELTHERESULTSSHOWNABOVEAREACHIEVEDBYANALGEBRAICTURBULENCEMODELBALDWINLOMAXTYPEWHERETHEFLOWISRESOLVEDUPTOTHEWALLVORTEXROPEINADRAFTTUBEPROBLEMDESCRIPTIONASANOTHERSELFEXCITEDUNSTEADYFLOWEXAMPLETHESIMULATIONOFAVORTEXROPEINADRAFTTUBEISSHOWNHEREASTRAIGHTAXISYMMETRICALDIFFUSERISCONSIDEREDTHEINFLOWCONDITIONSTOTHEDIFFUSERARECHOSENACCORDINGTOTHEPARTLOADOPERATIONOFAFRANCISTURBINETHISMEANSTHATTHEFLOWSHOWSASTRONGSWIRLCOMPONENTTHEINLETVELOCITYDISTRIBUTIONANDTHEGEOMETRYAREPRESENTEDINFIG9THEINSTANTANEOUSFLOWFORACERTAINTIMESTEPISGIVENINFIG10,WHEREANISOPRESSURESURFACEASWELLASTHESECONDARYVELOCITYVECTORSINTHREECROSSSECTIONSAREPLOTTEDCLEARLYTHECORKSCREWTYPEFLOWWITHANUNSYMMETRICALFORMISVISIBLE,ALTHOUGHTHEGEOMETRYANDTHEBOUNDARYCONDITIONSARECOMPLETELYAXISYMMETRICALFIG9GEOMETRYANDINLETCONDITIONSFIG10ISOPRESSUREANDSECONDARYFLOWOFAVORTEXROPEINFIG11THESECONDARYVELOCITYANDTHELOWPRESSUREREGION,WHICHREPRESENTSTHEVORTEXCENTER,ISSHOWNINTHECROSSSECTIONS,INDICATEDINFIG9,FORCERTAINTIMESTEPSCLEARLYTHEREVOLUTIONOFTHEVORTEXCENTERCANBEOBSERVEDTHIS,OFCOURSE,CAUSESPRESSUREFLUCTUATIONSANDTHEREFOREDYNAMICALFORCESONTHEDRAFTTUBESURFACEFIG11SECONDARYMOTIONANDLOWPRESSUREREGIONFORDIFFERENTTIMESTEPSDISCUSSIONCONCERNINGTHENUMERICALSCHEMEANDTHETURBULENCEMODELSTHEDISCUSSIONABOVEALSOAPPLIESHERE,EGAPPLICATIONOFTHESTANDARDKMODELLEADSTOASTEADYSTATE,SYMMETRICALSOLUTIONTHISISALSOREPORTEDIN7THERESULTSSHOWNABOVEAREACHIEVEDBYAPPLYINGTHEMULTISCALEKMODELOFKIM8TOGETHERWITHASTREAMLINECURVATURECORRECTIONTHISMODELSHOWSAMUCHLOWEREDDYVISCOSITYTHANTHESTANDARDMODEL,ESPECIALLYINSWIRLINGFLOWSTHEAPPLICATIONOFWALLFUNCTIONSDOESNOTGIVEANYPROBLEMSHERE,SINCETHEFLOWINSTABILITYHASITSORIGININTHECENTERANDISNOTAFFECTEDBYTHEPREDICTIONOFTHENEARWALLREGIONVORTEXINSTABILITYINAPIPETRIFURCATIONPROBLEMDESCRIPTIONINTHEFOLLOWINGANOTHERPROBLEMCAUSEDBYAVORTEXINSTABILITYISSHOWNITISAPIPETRIFURCATION,WHICHISESTABLISHEDINAPOWERPLANTINNEPALTHETRIFURCATIONDISTRIBUTESTHEWATERFROMTHEPENSTOCKTOTHETHREETURBINEUNITSTHEPROBLEMINTHISPLANTARISESFROMSEVEREFLUCTUATIONSOFTHEPOWEROUTPUTOFTHEBOTHOUTERTURBINESBYFIELDMEASUREMENTSTHETRIFURCATIONWASDISCOVEREDASTHEREASONFORTHEFLUCTUATIONSBYMEANSOFCFDANDBYMODELTESTS,CARRIEDOUTATASTROEINGRAZ,THEFLOWBEHAVIORSHOULDBEANALYZEDANDACUREOFTHEPROBLEMSHOULDBEFOUNDTHEGEOMETRYOFTHETRIFURCATIONISSHOWNINFIG12ITHASASPHERICALSHAPETHEFLUCTUATIONINTHETRIFURCATIONISCAUSEDBYASTRONGVORTEX,WHICHTENDSTOBEUNSTABLEITSKIPSBETWEENTHETWOSITUATIONS,SKETCHEDINFIG13INTHEMODELTESTSTHESECONDARYVELOCITYOFTHEVORTEXCOULDBEFOUNDTOBE30TIMESHIGHERTHANTHETRANSPORTVELOCITYTHEREASONISTHATATTHETOPOFTHESPHERETHEREISENOUGHSPACEFORAHUGEVORTEXTOFORMTHISVORTEXCONCENTRATESINTHESIDEBRANCHESANDTHEREFOREINCREASESTHESWIRLINTENSITYBECAUSEOFTHISSTRONGSECONDARYMOTIONTHEREARESTRONGLOSSESATTHEINLETOFTHEBRANCH,WHICHREDUCESTHEHEADOFTHETURBINEANDTHEREFORECAUSESTHEREDUCTIONOFPOWEROUTPUTDURINGTHEPROJECTITWASTRIEDTOOBTAINTHEUNSTEADYBEHAVIORBYAKSIMULATIONONRELATIVELYCOARSEGRIDS200300000NODESHOWEVER,THESECALCULATIONSDIDNOTSHOWTHEVORTEXINSTABILITYMERELYAVORTEXFORMSWHICHEXTENDSFROMONESIDEBRANCHTOTHEOTHERTHESWIRLINTENSITYWASUNDERPREDICTEDBYMORETHANAFACTORFIVEBECAUSEOFTHELOWSWIRLRATETHEVORTEXISCOMPLETELYSTABLEANDHASNOTENDENCYOFSKIPPINGBETWEENDIFFERENTSTATIONSEVENBYADYNAMICALEXCITATIONCAUSEDBYCHANGESOFTHEOUTLETBOUNDARYCONDITIONOFONEBRANCHTHEPREDICTEDVORTEXDIDNOTCHANGEITSPOSITIONONLYWHENAPPLYINGFINERGRIDSANDANOTHERTURBULENCEMODELTHEPREDICTEDSWIRLINTENSITYCOULDBEINCREASEDHEREANALGEBRAICTURBULENCEMODELWITHALIMITATIONOFTHEEDDYVISCOSITYISAPPLIEDTHEUSEDGRIDSCONSISTSOFABOUT500000NODESASACONSEQUENCETHISLEADSTOANINSTABILITYOFTHEVORTEXINTHEPREDICTIONTHEVORTEXSKIPSBETWEENTHETWOSTRUCTURESSHOWNINFIG14ONEOFTHESESTRUCTURESCORRESPONDSQUITEWELLWITHTHESTRUCTUREOBSERVEDINTHEMODELTESTSINTHESECONDSITUATIONTHEVORTEXEXPENDSFROMONESIDEBRANCHTOTHEOTHERTHISCOMPLIESWITHTHEABOVEMENTIONEDSTABLERESULTSTHECALCULATEDSWIRLINTENSITYISSTILLMORETHANTWOTIMESLOWERCOMPAREDTOTHERESULTSOFTHEMODELTESTSTHEREFOREFURTHERINVESTIGAFIG12GEOMETRYOFTHETRIFURCATIONFIG13VORTEXSTRUCTURETIONSWITHOTHERTURBULENCEMODELSANDWITHFINERGRIDSARENECESSARYANDWILLBECARRIEDOUTINFUTUREFIG14PREDICTEDVORTEXSTRUCTURESFORCOMPLETENESSTHESOLUTIONTOTHEPROBLEMISSHOWNITCONSISTSOFTHEINSTALLATIONOFTWOPLATESINTHEUPPERANDLOWERPARTOFTHESPHERETHISISSHOWNINFIG15HENCENOFREESPACEISAVAILABLE,WHERETHEVORTEXCANFORMCONSEQUENTLYTHEINTENSITYOFTHEVORTEXISDRAMATICALLYREDUCEDANDTHEVORTEXISCOMPLETELYSTABLEINTHEMEANTIMETHERECONSTRUCTIONWASCARRIEDOUTANDTHEFLUCTUATIONOFTHEPOWEROUTPUTVANISHEDASABYPRODUCTTHELOSSESINTHETRIFURCATIONARESEVERELYREDUCED,WHICHRESULTSINANINCREASEOFPOWEROUTPUTOFAPPROXIMATELY5FURTHERDETAILSOFTHISPROBLEMCANBEFOUNDIN9,10DISCUSSIONASALREADYMENTIONEDTHECALCULATIONSUSINGTHEKMODELWERENOTSUCCESSFULITISWELLKNOWNTHATTHISMODELISNOTABLETOPREDICTHIGHLYSWIRLINGFLOWSACCURATELYTHEUNSTEADYMOTIONOFTHEVORTICESESPECIALLYOFVERYSLIMVORTICES,HOWEVER,VERYMUCHDEPENDSONTHESWIRLINTENSITYINORDERTOPRESCRIBESUCHTYPESOFFLOWWITHSUFFICIENTACCURACYITISNECESSARYTOHAVEHIGHLYSOPHISTICATEDTURBULENCEMODELSANDVERYFINEGRIDS,MAYBETHEONLYWAYTOACHIEVEITISTHEAPPLICATIONOFLARGEEDDYSIMULATIONROTORSTATORINTERACTIONINANAXIALTUBINETHEFOLLOWINGEXAMPLEBELONGSTOTHESECONDGROUP,THEUNSTEADINESSISFORCEDBYMOVINGGEOMETRIESTHEPROBLEMINQUESTIONISTHEFIG15MODIFIEDGEOMETRYFIG16GEOMETRYOFTHEINVESTIGATEDAXIALTURBINEFLOWINANAXIALTURBINETHESPECIALITYOFTHISTURBINEISITSRELATIVELYLOWSPECIFICSPEEDITHASBEENDESIGNEDFORPRESSURERECUPERATIONINPIPINGSYSTEMSTHEADVANTAGEISTHATTHEDISCHARGEISNEARLYINDEPENDENTOFTHESPEED,BECAUSEOFTHATTHETURBINECANNOTINTRODUCEWATERHAMMERSINTHESYSTEMTHEGEOMETRYOFTHETURBINEISSHOWNINFIG16ITCONSISTSOFTHEINLETCONFUSER,12FIXEDGUIDEVANES,15RUNNERBLADESANDTHEDRAFTTUBETHESTATORANDROTORPARTISSHOWNINMOREDETAILINFIG17FORTHESIMULATIONTHECOMPLETETURBINEISCONSIDEREDINCLUDINGALLFLOWCHANNELSINTHEGUIDEVANESANDINTHERUNNER,ALTHOUGHASYMMETRYCONDITIONOF120COULDBEUSEDTHEREASONIS,THATALSOAVARIANTWITHUNSYMMETRICALOUTLETHASBEENINVESTIGATEDTHECOMPUTATIONALMESHCONSISTSOFMORETHAN2MILLIONGRIDNODES,PARTOFTHEGRIDISSHOWNINFIG18THESEAREROUGHLY60000NODESPERFLOWCHANNELITISARATHERCOARSEGRID,CONSIDERINGTHATTHECLEARANCEBETWEENRUNNERBLADESANDCASINGHASTOBEINCLUDEDINTHEMODEL,WHICHISNECESSARYSINCETHECLEARANCEFLOWVERYMUCHAFFECTSTHECHANNELFLOWBECAUSEOFTHESHORTRUNNERBLADESTHECALCULATIONSARECARRIEDOUTUSINGTHESTANDARDKMODELINTHEFOLLOWINGSOMERESULTSOFTHECALCULATIONWILLBESHOWNINFIG19THEINSTANTANEOUSFLOWINTHERUNNERISPRESENTEDTHEFIGURESHOWSTHEPRESSUREDISTRIBUTIONOFTHERUNNERSURFACEASWELLASSTREAMLINESSTARTEDATDIFFERENTLOCATIONSLOOKINGATTHEPRESSUREONECLEARLYSEESTHESTAGNATIONPOINTATTHELEADINGEDGETHELOCATIONOFTHEDRAFTTUBEGUIDEVANESRUNNERFIG18PARTOFTHECOMPUTATIONALMESHFIG17GEOMETRYOFROTORANDSTATORFIG19INSTANTANEOUSFLOWINTHERUNNERSTAGNATIONPOINTVARIESSLIGHTLYWITHTHERUNNERPOSITIONGENERALLYTHEINLETFLOWANGLESEEMSTOBESLIGHTLYTOOFLATTHEREFORETHESTAGNATIONPOINTISSHIFTEDTOWARDSTHESUCTIONSIDECONSIDERINGTHEFLOWINTHETIPCLEARANCEONECANOBSERVETHATATTHEINLETTHESHEARFORCESDOMINATETHEFLOWTENDSTOGOFROMTHESUCTIONTOTHEPRESSURESIDEINTHESECONDHALFOFTHEBLADETHEPRESSUREFORCESDOMINATETHEFLOWINTHECLEARANCEGOESFROMTHEPRESSURETOTHESUCTIONSIDEITCANALREADYBESEENBYTHISRESULTSTHATTHEDESIGNOFTHERUNNERISNOTOPTIMALTHISISAFIRSTVERSION,INTHEMEANTIMEAMUCHBETTERRUNNERHASBEENDESIGNEDHOWEVERTHISGEOMETRYISNUMERICALLYINVESTIGATEDSINCEEXTENSIVEMEASUREMENTSHAVEBEENCARRIEDOUTFORTHISCONFIGURATIONANDTHENUMERICALRESULTSCANBEVALIDATEDINFIG20AGAINTHEINSTANTANEOUSPRESSUREFORACERTAINTIMESTEPISSHOWNONECANOBSERVETHELOWPRESSUREREGIONONTHESUCTIONSIDEATTHETOPOFTHERUNNERBLADESCLEARLYVISIBLEISTHEVARIATIONOFTHEPRESSUREWITHTHEPOSITIONTHELOWPRESSUREREGIONCORRESPONDSQUITEWELLWITHTHECAVITATIONOBSERVATIONATTHETESTRIG,SEEFIG21THEREONEALSOCANOBSERVETHEVARIATIONOFTHECAVITATIONBUBBLESACCORDINGTOTHERUNNERPOSITIONASAQUANTITATIVECOMPARISONTHEPRESSUREATTWOLOCATIONSISSHOWNINFIG22POSITION1ISLOCATEDINFRONTOFTHEGUIDEVANESANDTHESECONDPOSITIONLIESBETWEENTHEGUIDEVANESANDTHERUNNERATBOTHLOCATIONSTHEMEASUREDANDTHECALCULATEDPRESSURECORRESPONDSQUITEWELLONECANSEETHATEVENINFRONTOFTHEGUIDEVANESPRESSUREFLUCTUATIONSCANBEOBSERVEDBETWEENTHESTATORFIG20CALCULATEDPRESSUREDISTRIBUTIONFORACERTAINRUNNERPOSITIONFIG21CAVITATIONOBSERVATIONINTHERUNNERFIG22PRESSUREDISTRIBUTIONATTWOSPOTPOINTSANDTHEROTORFLUCTUATIONSOFNEARLY25OFTHEHEADOFTHETURBINECANBESEENTHIS,OFCOURSE,LEADSTODYNAMICALFORCESONTHEBLADESINFIG23THETORQUEONONERUNNERBLADEASWELLASTHETORQUEOFTHECOMPLETERUNNERISSHOWNTHECALCULATEDTORQUEFLUCTUATIONONASINGLEBLADEARENEARLY30OFTHEAVERAGEDTORQUETHISISADYNAMICALFORCEONTHEBLADINGTHETOTALTORQUE,HOWEVER,ISNEARLYCONSTANTDUETOTHEGREATNUMBEROFBLADESANDDUETODIFFERENTPHASESOFTHEFLUCTUATIO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建泉州发展集团有限公司(第一批)人才引进招聘25人模拟试卷及完整答案详解1套
- 2025年上半年齐齐哈尔医学院附属第二医院公开招聘编制外工作人员17人考前自测高频考点模拟试题及参考答案详解1套
- 2025年致远学院第一批次人才引进考前自测高频考点模拟试题附答案详解(典型题)
- 2025江苏连云港市灌云县招聘就业困难人员公益性岗位26人模拟试卷及完整答案详解一套
- 2025江苏盐城市第七人民医院招录政府购买服务用工14人模拟试卷及完整答案详解一套
- 2025福建福州市仓山区卫健系统招聘编内31人考前自测高频考点模拟试题及完整答案详解
- 2025福建农信春季招聘194人模拟试卷附答案详解(考试直接用)
- 2025广东珠海市公安局招聘合同制职员拟聘用(第二批)考前自测高频考点模拟试题附答案详解
- 2025吉林大学白求恩第一医院泌尿外一科录入员招聘1人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025广西百色市人民医院人才招聘38人(第二批)考前自测高频考点模拟试题及答案详解(夺冠)
- 科普:农药毒性分类
- 陈阅增普通生物学第1篇3细胞结构与细胞通讯教学课件
- 练习使用显微镜 全国公开课一等奖
- 【执业药师考试】执业药师历年真题
- 2023年高考地理(上海卷)-含答案
- 比重式精选机的使用与维护
- FZ/T 81004-2022连衣裙、裙套
- GB/T 34875-2017离心泵和转子泵用轴封系统
- 细胞培养技术培训课件
- 故障录波器课件
- 管片质量问题原因分析及控制措施
评论
0/150
提交评论