文档简介
UNSTEADYFLOWANALYSISINHYDRAULICTURBOMACHINERYALBERTRUPRECHTINSTITUTEOFFLUIDMECHANICSANDHYDRAULICMACHINERYUNIVERSITYOFSTUTTGART,GERMANYABSTRACTINTHEFIELDOFHYDRAULICMACHINERYCOMPUTATIONALFLUIDDYNAMICSCFDISROUTINELYUSEDTODAYINRESEARCHANDDEVELOPMENTASWELLASINDESIGNATTHATNEARLYALWAYSSTEADYSTATESIMULATIONSAREAPPLIEDINTHISPAPER,HOWEVER,UNSTEADYSIMULATIONSARESHOWNFORDIFFERENTEXAMPLESTHEPRESENTEDEXAMPLESCONTAINAPPLICATIONSWITHSELFEXCITEDUNSTEADINESS,EGVORTEXSHEDDINGORVORTEXROPEINTHEDRAFTTUBE,ASWELLASAPPLICATIONSWITHEXTERNALLYFORCEDUNSTEADINESSBYCHANGINGORMOVINGGEOMETRIES,EGROTORSTATORINTERACTIONSFORTHESEEXAMPLESTHEREQUIREMENTS,POTENTIALANDLIMITATIONSOFUNSTEADYFLOWANALYSISASSESSEDPARTICULARLYTHEDEMANDSONTHETURBULENCEMODELSANDTHENECESSARYCOMPUTATIONALEFFORTSAREDISCUSSEDINTRODUCTIONFORMORETHANADECADECOMPUTATIONALFLUIDDYNAMICSCFDISUSEDINTHEFIELDOFHYDRAULICMACHINERYINRESEARCHANDDEVELOPMENTASWELLASINTHEDAILYDESIGNBUSINESSEARLYSUCCESSFULDEMONSTRATIONSAREGIVENEGINTHEGAMMWORKSHOP1THEAPPLICATIONSARESTEADILYINCREASINGTHISISEXPRESSEDINFIG1,WHERETHEPERCENTAGEOFPAPERSDEALINGWITHCFDISSHOWN,WHICHWEREPRESENTEDATTHEIAHRSYMPOSIUMONHYDRAULICMACHINERYANDCAVITATIONSTARTINGWITHQ3DEULERAND3DEULERTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSTOGETHERWITHAROBUSTMODELOFTURBULENCEUSUALLYTHEKMODELISUSEDITISCOMMONPRACTICETOAPPLYSTEADYSTATESIMULATIONS,THEUNSTEADINESSINCONSEQUENCEOFTHEROTORSTATORINTERACTIONSISADDRESSEDBYAVERAGINGPROCEDURESBYTHISMETHODACCURATERESULTSAREOBTAINEDFORMANYQUESTIONSINTHEDESIGNOFCOMPONENTSHOWEVER,DIFFERENTPROBLEMSINTURBOMACHINERYARISEFROMUNSTEADYFLOWPHENOMENAINORDERTOGETINFORMATIONONTHISPHENOMENAORSOLUTIONSTOTHEPROBLEMSANUNSTEADYFLOWANALYSISISNECESSARYTHISREQUIRESAMUCHHIGHERCOMPUTATIONALEFFORT,ROUGHLYAFACTOR510COMPAREDTOSTEADYSTATE,DEPENDINGOFTHEPROBLEMANDOFTHEDEGREEOFMODELINGASSUMPTIONSWITHTODAYSCOMPUTERSANDSOFTWARE,HOWEVER,UNSTEADYPROBLEMSCANBESOLVEDFIG1PERCENTAGEOFPAPERSATTHEIAHRSYMPOSIUMDEALINGWITHCFDTWOMAJORGROUPSOFUNSTEADYPROBLEMSCANBEDISTINGUISHEDTHEFIRSTGROUPAREFLOWSWITHANEXTERNALLYFORCEDUNSTEADINESSTHISCANBECAUSEDBYUNSTEADYBOUNDARYCONDITIONSORBYCHANGINGOFTHEGEOMETRYWITHTIMEEXAMPLESARETHECLOSUREOFAVALVE,THECHANGEOFTHEFLOWDOMAININAPISTONPUMP,ORTHEROTORSTATORINTERACTIONSTHESECONDGROUPAREFLOWSWITHSELFEXCITEDUNSTEADINESS,WHICHAREEGTURBULENTMOTION,VORTEXSHEDDINGKARMANVORTEXSTREETORUNSTEADYVORTEXBEHAVIOREGVORTEXROPEINADRAFTTUBEHERETHEUNSTEADINESSISOBTAINEDWITHOUTANYCHANGEOFTHEBOUNDARYCONDITIONSOROFTHEGEOMETRYTHERECANALSOOCCURACOMBINATIONOFBOTHGROUPSEGFLOWINDUCEDVIBRATIONS,CHANGEOFGEOMETRYCAUSEDBYVORTEXSHEDDINGALLTHESEPHENOMENACANTAKEPLACEINATURBINEORPUMPANDREQUIREDIFFERENTSOLUTIONPROCEDURESBASICEQUATIONSANDNUMERICALPROCEDURESINHYDRAULICTURBOMACHINERYTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSFORANINCOMPRESSIBLEFLOWAREAPPLIEDCOMPAREDTOTHESTEADYSTATETHEMOMENTUMEQUATIONSCONTAINANADDITIONALTERMPRESCRIBINGTHEUNSTEADYCHANGE0XUXUXXP1XUUTUIJIJJIJIJIJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE61IJARETHEREYNOLDSSTRESSES,WHICHARECALCULATEDFROMTHETURBULENCEMODELTHECONTINUITYEQUATIONFORINCOMPRESSIBLEFLOWREADS0XUII2ANDDOESNOTCONTAINATIMEDEPENDINGTERMITHASTOBEEMPHASIZEDTHATTHEEQUATIONS1AND2BEHAVESDIFFERENTINTIMEANDINSPACEINSPACETHEYSHOWELLIPTICBEHAVIOR,THEREFORETHEYREQUIREBOUNDARYCONDITIONSONALLSURFACESINTIME,HOWEVER,THEYAREOFPARABOLICNATURE,WHICHMEANTHATTHEREISNOFEEDBACKFROMTHEFUTURETOTHEPRESENTORPASTBECAUSEOFTHATNOBOUNDARYCONDITIONSAREREQUIREDINTHEFUTURETHISISSCHEMATICALLYSHOWNINFIG2THISISTHEREASON,WHYTHETIMEDISCRETIZATIONISGENERALLYCARRIEDOUTINADIFFERENTWAYTHANTHESPATIALDISCRETIZATIONFORSPATIALDISCRETIZATIONUSUALLYAFINITEVOLUMEORAFINITEELEMENTAPPROXIMATIONISAPPLIEDFORTIMEDISCRETIZATION,HOWEVER,MOSTLYTHEFINITEDIFFERENCEMETHODISUSEDAFEWOFTHEMOSTPOPULARFINITEDIFFERENCEAPPROXIMATIONSARESHOWNINFIG3INADDITIONEXPLICITMULTIPOINTSCHEMESOFRUNGEKUTTATYPEORPREDICTORCORRECTORSCHEMESAREOFTENAPPLIEDFIG2BOUNDARYANDINITIALCONDITIONSFIG3TIMEDISCRETIZATIONSCHEMESITHASTOBEMENTIONEDTHATTHEEXPLICITMETHODSREQUIREARESTRICTIONOFTHETIMESTEPACCORDINGTOSTABILITYCRITERIACFLCRITERIA,WHICHDEPENDONTHELOCALVELOCITIESANDTHELOCALGRIDSIZETHEIMPLICITMETHODS,INCONTRARY,AREALWAYSSTABLE,THEREISNORESTRICTIONOFTHETIMESTEPITCANBECHOSENONLYACCORDINGTOTHEPHYSICALREQUIREMENTSINORDERTOOBTAINACCURATESOLUTIONSTHETIMEDISCRETIZATIONSHOULDBEATLEASTOF2NDORDER,SIMILARTOTHESPATIALDISCRETIZATIONOTHERWISEEXTREMELYSMALLTIMESTEPSWOULDBEREQUIREDTHEABOVEDESCRIPTIONOFTHEFLOWINTHEEULERIANCOORDINATESCANBEAPPLIEDFORUNSTEADYBOUNDARYCONDITIONPROBLEMSASWELLASFORSELFEXCITEDUNSTEADINESSHOWEVER,TOEXPRESSPROBLEMSWITHMOVINGGEOMETRIESINEULERIANCOORDINATESISMOREDIFFICULTATTHEMOVINGBOUNDARYALAGRANGIANDESCRIPTIONCANBEAPPLIEDVERYEASILYSINCETHEFLUIDPARTICLESCANBETRACEDBYTHISMETHODCOMBININGTHESETWOMETHODSANARBITRARYLAGRANGIANEULERIANALEMETHODCANBEUTILIZEDTHISMETHODISSUITABLEFORTHESOLUTIONOFPROBLEMSWITHMOVINGBOUNDARIESINTHEALEMETHODTHEREFERENCECOORDINATESCANBECHOSENARBITRARYINTHISREFERENTIALCOORDINATESYSTEMTHEMATERIALDERIVATIVECANBEDESCRIBEDASJEIJJRILIXT,XFWUTT,XFTT,XF3WITHTHECOORDINATESSCOODDINATEEULERIANXSCOODDINATELREFERENTIAXSCOODDINATELAGRANGIANXEIRILIANDWIREFERENCEVELOCITYTHEMOMENTUMEQUATIONSINTHEALEFORMULATIONCANBEWRITTENASFOLLOWS0XUXUXXP1XUWUTUIJIJJIJIJIJJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE64THEMOVINGOFTHEREFERENCESYSTEMWICANBECHOSENARBITRARYIFWIISEQUALTOZEROONEGETSTHEEULERIANDESCRIPTION,ONTHEOTHERHAND,IFWIISEQUALTOTHEVELOCITYOFTHEFLUIDPARTICLETHELAGRANGIANFORMULATIONISOBTAINEDTHECONVECTIVETERMINTHETRANSPORTEQUATIONSFORSCALARQUANTITIESCHANGESINTHESAMEWAYTHANINTHEMOMENTUMEQUATIONSTHISAPPLIESALSOTOTHEKANDEQUATIONSTHENUMERICALREALIZATIONOFMOVINGORCHANGINGGRIDSCANEITHERBEOBTAINEDBYDEFORMATIONOFANEXISTINGMESHINEACHTIMESTEPFORLARGEDEFORMATIONSTHISREQUIRESANAUTOMATICGRIDSMOOTHINGALGORITHMOREVENANAUTOMATICREMESHINGAFTERAFEWTIMESTEPSANOTHERMETHODISTHEUSEOFDIFFERENTEMBEDDEDGRIDS,WHICHCANMOVEAGAINSTEACHOTHERINTHISCASEASLIDINGINTERFACEBETWEENTHENONMATCHINGGRIDSISREQUIREDTHISPROCEDUREISSCHEMATICALLYSHOWNINFIG4FORTWODIFFERENTPROBLEMS,NAMELYROTORSTATORINTERACTIONANDVIBRATIONOFACYLINDERINAFLUIDINFENFLOSS,THECOMPUTERCODEDEVELOPEDATOURINSTITUTEATUNIVERSITYOFSTUTTGART,THESECONDAPPROACHISAPPLIEDTHEINTERFACEBETWEENTHEGRIDSISREALIZEDBYMEANSOFDYNAMICBOUNDARYCONDITIONS,WHEREDOWNSTREAMTHENODEVALUESVELOCITIESANDTURBULENCEQUANTITIESAREPRESCRIBEDANDUPSTREAMPRESSUREANDFLUXESAREINTRODUCEDASSURFACECONDITIONSABRIEFOVERVIEWONTHENUMERICALPROCEDURESISGIVENIN2,FORMOREDETAILSTHEREADERISREFERREDTO3,4ONEPOINTHASTOBEEMPHASIZEDSINCETHEUNSTEADYSIMULATIONSREQUIREASEVEREINCREASEOFCOMPUTATIONALEFFORTCOMPAREDTOSTEADYSTATESOLUTIONS,PARALLELPROCEDURESARENECESSARYINTHISCASETHEALEFORMULATIONWITHMOVINGGRIDSLEADSTOADYNAMICCHANGEOFCOMMUNICATIONBECAUSETHELOCATIONOFEXCHANGEBOUNDARIESVARIESWITHTIMEANDCANTHEREFORECHANGETHECOMPUTATIONALDOMAINOFTHEPROCESSORS,SEE2INFENFLOSSANIMPLICITSOLUTIONALGORITHMISAPPLIEDASALREADYMENTIONEDTHISHASTHEADVANTAGETHATTHEREISNOSTABILITYLIMITATIONFORTHETIMESTEPTHEOVERALLSOLUTIONPROCEDUREINCLUDINGTHEFLUIDSTRUCTUREINTERACTIONISSHOWNINFIG5IFTHEMOVEMENTOFTHEGRIDDOESNOTDEPENDONTHEFLOWSITUATIONTHEFLUIDSTRUCTURELOOPVANISHESFIG5FLOWCHARTOFFENFLOSSINCLUDINGFLUIDSTRUCTUREINTERACTIONFIG4MOVINGGRIDEXAMPLESAPPLICATIONSINTHEFOLLOWINGSELECTEDAPPLICATIONSARESHOWNANDTHESPECIFICPROBLEMSFORTHISEXAMPLESAREDISCUSSEDFIRSTLYSOMECASESWITHSELFEXCITEDUNSTEADINESSAREPRESENTEDVORTEXSHEDDINGATTHEINLETOFAPOWERPLANTPROBLEMDESCRIPTIONTHEFIRSTEXAMPLESHOWSTHEFLOWBEHAVIORATTHEINLETOFALOWHEADPOWERPLANTITISANEXISTINGPLANTWITHTWOIDENTICALBULBTURBINESDURINGOPERATIONTHEINNERTURBINESHOWEDSEVEREBEARINGPROBLEMSWHEREASTHEOUTERTURBINEOPERATESSMOOTHLYTHEREASONWASEXPECTEDTOBEVORTEXSHEDDINGATTHEINLETBYNUMERICALANALYSISTHEPROBLEMWASINVESTIGATEDANDITWASTRIEDTOFINDASOLUTIONTOTHEPROBLEMINFIG6THEGEOMETRYISSHOWNTHECALCULATIONHASBEENCARRIEDOUTIN2DASWELLASIN3DFIRSTLYITWASTRIEDTOCARRYOUTASTEADYSTATESIMULATION,HOWEVER,NOCONVERGEDSOLUTIONCOULDBEOBTAINEDTHEREFOREANUNSTEADYSIMULATIONWASUNDERTAKENTHERESULTSINDICATEASTRONGUNSTEADYMOTIONINFIG7THEVELOCITYDISTRIBUTIONATACERTAINTIMESTEPISPRESENTEDCLEARLYVISIBLEARETHEVORTICES,SHEDDINGFROMTHEINLETANDMOVINGDOWNSTREAMINTOTHEINNERTURBINETHISISTHEREASONOFTHEDESTRUCTIONOFTHEBEARINGSINORDERTOIMPROVETHEFLOWBEHAVIORAMODIFIEDGEOMETRYWASSUGGESTEDTHISGEOMETRY,SHOWNINFIG8,HASBEENBUILTINTHEMEANTIMETHEREARENOLONGERPROBLEMSWITHVORTEXSHEDDINGFURTHERDETAILSABOUTTHISAPPLICATIONCANBEFOUNDIN5,6DISCUSSIONTHEPHYSICALUNSTEADINESSOFTHEFLOWHASBEENINDICATEDBYTHEINABILITYTOACHIEVEACONVERGEDSTEADYSTATESOLUTIONTHISISVERYOFTENTHECASEWITHFLOWSSHOWINGVORTEXSHEDDINGINREALITYFIG6GEOMETRYOFPOWERPLANTINLETFIG7INSTANTANEOUSVELOCITYVECTORS,VORTEXSHEDDINGATTHEINLETPIERFIG8MODIFIEDGEOMETRYANECESSARYCONDITIONFORTHATIS,THATTHENUMERICALSCHEMEDOESNOTCONTAINSERIOUSARTIFICIALDIFFUSION,WHICHWOULDSUPPRESSTHEUNSTEADYMOTIONTHESAMEAPPLIESTOTHEUSEDTURBULENCEMODELTHESTANDARDKMODELUSUALLYPRODUCESATOOHIGHEDDYVISCOSITY,ESPECIALLYINSWIRLINGFLOWS,ANDTHEREFOREITVERYOFTENSUPPRESSESTHEUNSTEADYMOTIONTHISWILLBEDISCUSSEDAGAININOTHERAPPLICATIONSFORMANYCASESATLEASTASTREAMLINECURVATURECORRECTIONOREVENANONLINEAREDDYVISCOSITYFORMULATIONISNECESSARYINORDERTOAVOIDATOOHIGHTURBULENCEPRODUCTIONANOTHERPOINTINTURBULENCEMODELINGISTHETREATMENTOFTHENEARWALLFLOWITISWELLKNOWNTHATTHEUSEOFWALLFUNCTIONSUSUALLYTENDSTOPREDICTAFLOWSEPARATIONTOOLATEINCASEOFVORTEXSHEDDINGTHISCANCAUSEASEVEREREDUCTIONOFTHEVORTEXSIZESOREVENACOMPLETESUPPRESSIONOFTHEVORTICESMOREACCURATERESULTSCANBEOBTAINEDBYSOLVINGTHEFLOWUPTOTHEWALLIFPOSSIBLEBYALOWREYNOLDSORATWOLAYERMODELTHERESULTSSHOWNABOVEAREACHIEVEDBYANALGEBRAICTURBULENCEMODELBALDWINLOMAXTYPEWHERETHEFLOWISRESOLVEDUPTOTHEWALLVORTEXROPEINADRAFTTUBEPROBLEMDESCRIPTIONASANOTHERSELFEXCITEDUNSTEADYFLOWEXAMPLETHESIMULATIONOFAVORTEXROPEINADRAFTTUBEISSHOWNHEREASTRAIGHTAXISYMMETRICALDIFFUSERISCONSIDEREDTHEINFLOWCONDITIONSTOTHEDIFFUSERARECHOSENACCORDINGTOTHEPARTLOADOPERATIONOFAFRANCISTURBINETHISMEANSTHATTHEFLOWSHOWSASTRONGSWIRLCOMPONENTTHEINLETVELOCITYDISTRIBUTIONANDTHEGEOMETRYAREPRESENTEDINFIG9THEINSTANTANEOUSFLOWFORACERTAINTIMESTEPISGIVENINFIG10,WHEREANISOPRESSURESURFACEASWELLASTHESECONDARYVELOCITYVECTORSINTHREECROSSSECTIONSAREPLOTTEDCLEARLYTHECORKSCREWTYPEFLOWWITHANUNSYMMETRICALFORMISVISIBLE,ALTHOUGHTHEGEOMETRYANDTHEBOUNDARYCONDITIONSARECOMPLETELYAXISYMMETRICALFIG9GEOMETRYANDINLETCONDITIONSFIG10ISOPRESSUREANDSECONDARYFLOWOFAVORTEXROPEINFIG11THESECONDARYVELOCITYANDTHELOWPRESSUREREGION,WHICHREPRESENTSTHEVORTEXCENTER,ISSHOWNINTHECROSSSECTIONS,INDICATEDINFIG9,FORCERTAINTIMESTEPSCLEARLYTHEREVOLUTIONOFTHEVORTEXCENTERCANBEOBSERVEDTHIS,OFCOURSE,CAUSESPRESSUREFLUCTUATIONSANDTHEREFOREDYNAMICALFORCESONTHEDRAFTTUBESURFACEFIG11SECONDARYMOTIONANDLOWPRESSUREREGIONFORDIFFERENTTIMESTEPSDISCUSSIONCONCERNINGTHENUMERICALSCHEMEANDTHETURBULENCEMODELSTHEDISCUSSIONABOVEALSOAPPLIESHERE,EGAPPLICATIONOFTHESTANDARDKMODELLEADSTOASTEADYSTATE,SYMMETRICALSOLUTIONTHISISALSOREPORTEDIN7THERESULTSSHOWNABOVEAREACHIEVEDBYAPPLYINGTHEMULTISCALEKMODELOFKIM8TOGETHERWITHASTREAMLINECURVATURECORRECTIONTHISMODELSHOWSAMUCHLOWEREDDYVISCOSITYTHANTHESTANDARDMODEL,ESPECIALLYINSWIRLINGFLOWSTHEAPPLICATIONOFWALLFUNCTIONSDOESNOTGIVEANYPROBLEMSHERE,SINCETHEFLOWINSTABILITYHASITSORIGININTHECENTERANDISNOTAFFECTEDBYTHEPREDICTIONOFTHENEARWALLREGIONVORTEXINSTABILITYINAPIPETRIFURCATIONPROBLEMDESCRIPTIONINTHEFOLLOWINGANOTHERPROBLEMCAUSEDBYAVORTEXINSTABILITYISSHOWNITISAPIPETRIFURCATION,WHICHISESTABLISHEDINAPOWERPLANTINNEPALTHETRIFURCATIONDISTRIBUTESTHEWATERFROMTHEPENSTOCKTOTHETHREETURBINEUNITSTHEPROBLEMINTHISPLANTARISESFROMSEVEREFLUCTUATIONSOFTHEPOWEROUTPUTOFTHEBOTHOUTERTURBINESBYFIELDMEASUREMENTSTHETRIFURCATIONWASDISCOVEREDASTHEREASONFORTHEFLUCTUATIONSBYMEANSOFCFDANDBYMODELTESTS,CARRIEDOUTATASTROEINGRAZ,THEFLOWBEHAVIORSHOULDBEANALYZEDANDACUREOFTHEPROBLEMSHOULDBEFOUNDTHEGEOMETRYOFTHETRIFURCATIONISSHOWNINFIG12ITHASASPHERICALSHAPETHEFLUCTUATIONINTHETRIFURCATIONISCAUSEDBYASTRONGVORTEX,WHICHTENDSTOBEUNSTABLEITSKIPSBETWEENTHETWOSITUATIONS,SKETCHEDINFIG13INTHEMODELTESTSTHESECONDARYVELOCITYOFTHEVORTEXCOULDBEFOUNDTOBE30TIMESHIGHERTHANTHETRANSPORTVELOCITYTHEREASONISTHATATTHETOPOFTHESPHERETHEREISENOUGHSPACEFORAHUGEVORTEXTOFORMTHISVORTEXCONCENTRATESINTHESIDEBRANCHESANDTHEREFOREINCREASESTHESWIRLINTENSITYBECAUSEOFTHISSTRONGSECONDARYMOTIONTHEREARESTRONGLOSSESATTHEINLETOFTHEBRANCH,WHICHREDUCESTHEHEADOFTHETURBINEANDTHEREFORECAUSESTHEREDUCTIONOFPOWEROUTPUTDURINGTHEPROJECTITWASTRIEDTOOBTAINTHEUNSTEADYBEHAVIORBYAKSIMULATIONONRELATIVELYCOARSEGRIDS200300000NODESHOWEVER,THESECALCULATIONSDIDNOTSHOWTHEVORTEXINSTABILITYMERELYAVORTEXFORMSWHICHEXTENDSFROMONESIDEBRANCHTOTHEOTHERTHESWIRLINTENSITYWASUNDERPREDICTEDBYMORETHANAFACTORFIVEBECAUSEOFTHELOWSWIRLRATETHEVORTEXISCOMPLETELYSTABLEANDHASNOTENDENCYOFSKIPPINGBETWEENDIFFERENTSTATIONSEVENBYADYNAMICALEXCITATIONCAUSEDBYCHANGESOFTHEOUTLETBOUNDARYCONDITIONOFONEBRANCHTHEPREDICTEDVORTEXDIDNOTCHANGEITSPOSITIONONLYWHENAPPLYINGFINERGRIDSANDANOTHERTURBULENCEMODELTHEPREDICTEDSWIRLINTENSITYCOULDBEINCREASEDHEREANALGEBRAICTURBULENCEMODELWITHALIMITATIONOFTHEEDDYVISCOSITYISAPPLIEDTHEUSEDGRIDSCONSISTSOFABOUT500000NODESASACONSEQUENCETHISLEADSTOANINSTABILITYOFTHEVORTEXINTHEPREDICTIONTHEVORTEXSKIPSBETWEENTHETWOSTRUCTURESSHOWNINFIG14ONEOFTHESESTRUCTURESCORRESPONDSQUITEWELLWITHTHESTRUCTUREOBSERVEDINTHEMODELTESTSINTHESECONDSITUATIONTHEVORTEXEXPENDSFROMONESIDEBRANCHTOTHEOTHERTHISCOMPLIESWITHTHEABOVEMENTIONEDSTABLERESULTSTHECALCULATEDSWIRLINTENSITYISSTILLMORETHANTWOTIMESLOWERCOMPAREDTOTHERESULTSOFTHEMODELTESTSTHEREFOREFURTHERINVESTIGAFIG12GEOMETRYOFTHETRIFURCATIONFIG13VORTEXSTRUCTURETIONSWITHOTHERTURBULENCEMODELSANDWITHFINERGRIDSARENECESSARYANDWILLBECARRIEDOUTINFUTUREFIG14PREDICTEDVORTEXSTRUCTURESFORCOMPLETENESSTHESOLUTIONTOTHEPROBLEMISSHOWNITCONSISTSOFTHEINSTALLATIONOFTWOPLATESINTHEUPPERANDLOWERPARTOFTHESPHERETHISISSHOWNINFIG15HENCENOFREESPACEISAVAILABLE,WHERETHEVORTEXCANFORMCONSEQUENTLYTHEINTENSITYOFTHEVORTEXISDRAMATICALLYREDUCEDANDTHEVORTEXISCOMPLETELYSTABLEINTHEMEANTIMETHERECONSTRUCTIONWASCARRIEDOUTANDTHEFLUCTUATIONOFTHEPOWEROUTPUTVANISHEDASABYPRODUCTTHELOSSESINTHETRIFURCATIONARESEVERELYREDUCED,WHICHRESULTSINANINCREASEOFPOWEROUTPUTOFAPPROXIMATELY5FURTHERDETAILSOFTHISPROBLEMCANBEFOUNDIN9,10DISCUSSIONASALREADYMENTIONEDTHECALCULATIONSUSINGTHEKMODELWERENOTSUCCESSFULITISWELLKNOWNTHATTHISMODELISNOTABLETOPREDICTHIGHLYSWIRLINGFLOWSACCURATELYTHEUNSTEADYMOTIONOFTHEVORTICESESPECIALLYOFVERYSLIMVORTICES,HOWEVER,VERYMUCHDEPENDSONTHESWIRLINTENSITYINORDERTOPRESCRIBESUCHTYPESOFFLOWWITHSUFFICIENTACCURACYITISNECESSARYTOHAVEHIGHLYSOPHISTICATEDTURBULENCEMODELSANDVERYFINEGRIDS,MAYBETHEONLYWAYTOACHIEVEITISTHEAPPLICATIONOFLARGEEDDYSIMULATIONROTORSTATORINTERACTIONINANAXIALTUBINETHEFOLLOWINGEXAMPLEBELONGSTOTHESECONDGROUP,THEUNSTEADINESSISFORCEDBYMOVINGGEOMETRIESTHEPROBLEMINQUESTIONISTHEFIG15MODIFIEDGEOMETRYFIG16GEOMETRYOFTHEINVESTIGATEDAXIALTURBINEFLOWINANAXIALTURBINETHESPECIALITYOFTHISTURBINEISITSRELATIVELYLOWSPECIFICSPEEDITHASBEENDESIGNEDFORPRESSURERECUPERATIONINPIPINGSYSTEMSTHEADVANTAGEISTHATTHEDISCHARGEISNEARLYINDEPENDENTOFTHESPEED,BECAUSEOFTHATTHETURBINECANNOTINTRODUCEWATERHAMMERSINTHESYSTEMTHEGEOMETRYOFTHETURBINEISSHOWNINFIG16ITCONSISTSOFTHEINLETCONFUSER,12FIXEDGUIDEVANES,15RUNNERBLADESANDTHEDRAFTTUBETHESTATORANDROTORPARTISSHOWNINMOREDETAILINFIG17FORTHESIMULATIONTHECOMPLETETURBINEISCONSIDEREDINCLUDINGALLFLOWCHANNELSINTHEGUIDEVANESANDINTHERUNNER,ALTHOUGHASYMMETRYCONDITIONOF120COULDBEUSEDTHEREASONIS,THATALSOAVARIANTWITHUNSYMMETRICALOUTLETHASBEENINVESTIGATEDTHECOMPUTATIONALMESHCONSISTSOFMORETHAN2MILLIONGRIDNODES,PARTOFTHEGRIDISSHOWNINFIG18THESEAREROUGHLY60000NODESPERFLOWCHANNELITISARATHERCOARSEGRID,CONSIDERINGTHATTHECLEARANCEBETWEENRUNNERBLADESANDCASINGHASTOBEINCLUDEDINTHEMODEL,WHICHISNECESSARYSINCETHECLEARANCEFLOWVERYMUCHAFFECTSTHECHANNELFLOWBECAUSEOFTHESHORTRUNNERBLADESTHECALCULATIONSARECARRIEDOUTUSINGTHESTANDARDKMODELINTHEFOLLOWINGSOMERESULTSOFTHECALCULATIONWILLBESHOWNINFIG19THEINSTANTANEOUSFLOWINTHERUNNERISPRESENTEDTHEFIGURESHOWSTHEPRESSUREDISTRIBUTIONOFTHERUNNERSURFACEASWELLASSTREAMLINESSTARTEDATDIFFERENTLOCATIONSLOOKINGATTHEPRESSUREONECLEARLYSEESTHESTAGNATIONPOINTATTHELEADINGEDGETHELOCATIONOFTHEDRAFTTUBEGUIDEVANESRUNNERFIG18PARTOFTHECOMPUTATIONALMESHFIG17GEOMETRYOFROTORANDSTATORFIG19INSTANTANEOUSFLOWINTHERUNNERSTAGNATIONPOINTVARIESSLIGHTLYWITHTHERUNNERPOSITIONGENERALLYTHEINLETFLOWANGLESEEMSTOBESLIGHTLYTOOFLATTHEREFORETHESTAGNATIONPOINTISSHIFTEDTOWARDSTHESUCTIONSIDECONSIDERINGTHEFLOWINTHETIPCLEARANCEONECANOBSERVETHATATTHEINLETTHESHEARFORCESDOMINATETHEFLOWTENDSTOGOFROMTHESUCTIONTOTHEPRESSURESIDEINTHESECONDHALFOFTHEBLADETHEPRESSUREFORCESDOMINATETHEFLOWINTHECLEARANCEGOESFROMTHEPRESSURETOTHESUCTIONSIDEITCANALREADYBESEENBYTHISRESULTSTHATTHEDESIGNOFTHERUNNERISNOTOPTIMALTHISISAFIRSTVERSION,INTHEMEANTIMEAMUCHBETTERRUNNERHASBEENDESIGNEDHOWEVERTHISGEOMETRYISNUMERICALLYINVESTIGATEDSINCEEXTENSIVEMEASUREMENTSHAVEBEENCARRIEDOUTFORTHISCONFIGURATIONANDTHENUMERICALRESULTSCANBEVALIDATEDINFIG20AGAINTHEINSTANTANEOUSPRESSUREFORACERTAINTIMESTEPISSHOWNONECANOBSERVETHELOWPRESSUREREGIONONTHESUCTIONSIDEATTHETOPOFTHERUNNERBLADESCLEARLYVISIBLEISTHEVARIATIONOFTHEPRESSUREWITHTHEPOSITIONTHELOWPRESSUREREGIONCORRESPONDSQUITEWELLWITHTHECAVITATIONOBSERVATIONATTHETESTRIG,SEEFIG21THEREONEALSOCANOBSERVETHEVARIATIONOFTHECAVITATIONBUBBLESACCORDINGTOTHERUNNERPOSITIONASAQUANTITATIVECOMPARISONTHEPRESSUREATTWOLOCATIONSISSHOWNINFIG22POSITION1ISLOCATEDINFRONTOFTHEGUIDEVANESANDTHESECONDPOSITIONLIESBETWEENTHEGUIDEVANESANDTHERUNNERATBOTHLOCATIONSTHEMEASUREDANDTHECALCULATEDPRESSURECORRESPONDSQUITEWELLONECANSEETHATEVENINFRONTOFTHEGUIDEVANESPRESSUREFLUCTUATIONSCANBEOBSERVEDBETWEENTHESTATORFIG20CALCULATEDPRESSUREDISTRIBUTIONFORACERTAINRUNNERPOSITIONFIG21CAVITATIONOBSERVATIONINTHERUNNERFIG22PRESSUREDISTRIBUTIONATTWOSPOTPOINTSANDTHEROTORFLUCTUATIONSOFNEARLY25OFTHEHEADOFTHETURBINECANBESEENTHIS,OFCOURSE,LEADSTODYNAMICALFORCESONTHEBLADESINFIG23THETORQUEONONERUNNERBLADEASWELLASTHETORQUEOFTHECOMPLETERUNNERISSHOWNTHECALCULATEDTORQUEFLUCTUATIONONASINGLEBLADEARENEARLY30OFTHEAVERAGEDTORQUETHISISADYNAMICALFORCEONTHEBLADINGTHETOTALTORQUE,HOWEVER,ISNEARLYCONSTANTDUETOTHEGREATNUMBEROFBLADESANDDUETODIFFERENTPHASESOFTHEFLUCTUATIO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国农业科学院农产品加工研究所乡村产业振兴研究中心招聘合同制科研助理1人笔试考试备考试题及答案解析
- 2025福建海峡源脉温泉股份有限公司选聘1人笔试考试备考试题及答案解析
- 2025贵州安顺紫云自治县鼎固建材贸易有限责任公司招聘工作人员1人考试笔试参考题库附答案解析
- 黑龙江高三英语期中模拟试题大全
- 2025年下半年宁夏医科大学附属中医医院公开招聘备案制工作人员考试笔试模拟试题及答案解析
- 多参数协同监测技术-第1篇-洞察与解读
- 厂房加固协议合同范本
- 工厂饭店转让合同范本
- 会展业竞争与文化创新-洞察与解读
- 购买大米合同范本简单
- 广东省佛山市南海区2024-2025学年六年级上学期英语期中试卷(含答案)
- 增材制造技术应用项目教程(产品开发与原型制造)课件 模块三 产品零部件创新设计
- 马士华主编《供应链管理》核心内容深度解析及技术应用
- 水库防汛抢险课件讲稿
- 3-6岁儿童社会发展指导手册
- 2025-2026学年六年级科学上册第三单元《工具与技术》素养检测卷(含答案解析)
- 口腔根尖手术
- 总经理月度经营情况
- 钢结构施工组织设计1
- 2025年建筑安全员C证(专职安全员)考试题库及答案
- GB/T 24237-2025直接还原炉料用铁矿球团成团指数的测定方法
评论
0/150
提交评论