




文档简介
UNSTEADYFLOWANALYSISINHYDRAULICTURBOMACHINERYALBERTRUPRECHTINSTITUTEOFFLUIDMECHANICSANDHYDRAULICMACHINERYUNIVERSITYOFSTUTTGART,GERMANYABSTRACTINTHEFIELDOFHYDRAULICMACHINERYCOMPUTATIONALFLUIDDYNAMICSCFDISROUTINELYUSEDTODAYINRESEARCHANDDEVELOPMENTASWELLASINDESIGNATTHATNEARLYALWAYSSTEADYSTATESIMULATIONSAREAPPLIEDINTHISPAPER,HOWEVER,UNSTEADYSIMULATIONSARESHOWNFORDIFFERENTEXAMPLESTHEPRESENTEDEXAMPLESCONTAINAPPLICATIONSWITHSELFEXCITEDUNSTEADINESS,EGVORTEXSHEDDINGORVORTEXROPEINTHEDRAFTTUBE,ASWELLASAPPLICATIONSWITHEXTERNALLYFORCEDUNSTEADINESSBYCHANGINGORMOVINGGEOMETRIES,EGROTORSTATORINTERACTIONSFORTHESEEXAMPLESTHEREQUIREMENTS,POTENTIALANDLIMITATIONSOFUNSTEADYFLOWANALYSISASSESSEDPARTICULARLYTHEDEMANDSONTHETURBULENCEMODELSANDTHENECESSARYCOMPUTATIONALEFFORTSAREDISCUSSEDINTRODUCTIONFORMORETHANADECADECOMPUTATIONALFLUIDDYNAMICSCFDISUSEDINTHEFIELDOFHYDRAULICMACHINERYINRESEARCHANDDEVELOPMENTASWELLASINTHEDAILYDESIGNBUSINESSEARLYSUCCESSFULDEMONSTRATIONSAREGIVENEGINTHEGAMMWORKSHOP1THEAPPLICATIONSARESTEADILYINCREASINGTHISISEXPRESSEDINFIG1,WHERETHEPERCENTAGEOFPAPERSDEALINGWITHCFDISSHOWN,WHICHWEREPRESENTEDATTHEIAHRSYMPOSIUMONHYDRAULICMACHINERYANDCAVITATIONSTARTINGWITHQ3DEULERAND3DEULERTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSTOGETHERWITHAROBUSTMODELOFTURBULENCEUSUALLYTHEKMODELISUSEDITISCOMMONPRACTICETOAPPLYSTEADYSTATESIMULATIONS,THEUNSTEADINESSINCONSEQUENCEOFTHEROTORSTATORINTERACTIONSISADDRESSEDBYAVERAGINGPROCEDURESBYTHISMETHODACCURATERESULTSAREOBTAINEDFORMANYQUESTIONSINTHEDESIGNOFCOMPONENTSHOWEVER,DIFFERENTPROBLEMSINTURBOMACHINERYARISEFROMUNSTEADYFLOWPHENOMENAINORDERTOGETINFORMATIONONTHISPHENOMENAORSOLUTIONSTOTHEPROBLEMSANUNSTEADYFLOWANALYSISISNECESSARYTHISREQUIRESAMUCHHIGHERCOMPUTATIONALEFFORT,ROUGHLYAFACTOR510COMPAREDTOSTEADYSTATE,DEPENDINGOFTHEPROBLEMANDOFTHEDEGREEOFMODELINGASSUMPTIONSWITHTODAYSCOMPUTERSANDSOFTWARE,HOWEVER,UNSTEADYPROBLEMSCANBESOLVEDFIG1PERCENTAGEOFPAPERSATTHEIAHRSYMPOSIUMDEALINGWITHCFDTWOMAJORGROUPSOFUNSTEADYPROBLEMSCANBEDISTINGUISHEDTHEFIRSTGROUPAREFLOWSWITHANEXTERNALLYFORCEDUNSTEADINESSTHISCANBECAUSEDBYUNSTEADYBOUNDARYCONDITIONSORBYCHANGINGOFTHEGEOMETRYWITHTIMEEXAMPLESARETHECLOSUREOFAVALVE,THECHANGEOFTHEFLOWDOMAININAPISTONPUMP,ORTHEROTORSTATORINTERACTIONSTHESECONDGROUPAREFLOWSWITHSELFEXCITEDUNSTEADINESS,WHICHAREEGTURBULENTMOTION,VORTEXSHEDDINGKARMANVORTEXSTREETORUNSTEADYVORTEXBEHAVIOREGVORTEXROPEINADRAFTTUBEHERETHEUNSTEADINESSISOBTAINEDWITHOUTANYCHANGEOFTHEBOUNDARYCONDITIONSOROFTHEGEOMETRYTHERECANALSOOCCURACOMBINATIONOFBOTHGROUPSEGFLOWINDUCEDVIBRATIONS,CHANGEOFGEOMETRYCAUSEDBYVORTEXSHEDDINGALLTHESEPHENOMENACANTAKEPLACEINATURBINEORPUMPANDREQUIREDIFFERENTSOLUTIONPROCEDURESBASICEQUATIONSANDNUMERICALPROCEDURESINHYDRAULICTURBOMACHINERYTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSFORANINCOMPRESSIBLEFLOWAREAPPLIEDCOMPAREDTOTHESTEADYSTATETHEMOMENTUMEQUATIONSCONTAINANADDITIONALTERMPRESCRIBINGTHEUNSTEADYCHANGE0XUXUXXP1XUUTUIJIJJIJIJIJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE61IJARETHEREYNOLDSSTRESSES,WHICHARECALCULATEDFROMTHETURBULENCEMODELTHECONTINUITYEQUATIONFORINCOMPRESSIBLEFLOWREADS0XUII2ANDDOESNOTCONTAINATIMEDEPENDINGTERMITHASTOBEEMPHASIZEDTHATTHEEQUATIONS1AND2BEHAVESDIFFERENTINTIMEANDINSPACEINSPACETHEYSHOWELLIPTICBEHAVIOR,THEREFORETHEYREQUIREBOUNDARYCONDITIONSONALLSURFACESINTIME,HOWEVER,THEYAREOFPARABOLICNATURE,WHICHMEANTHATTHEREISNOFEEDBACKFROMTHEFUTURETOTHEPRESENTORPASTBECAUSEOFTHATNOBOUNDARYCONDITIONSAREREQUIREDINTHEFUTURETHISISSCHEMATICALLYSHOWNINFIG2THISISTHEREASON,WHYTHETIMEDISCRETIZATIONISGENERALLYCARRIEDOUTINADIFFERENTWAYTHANTHESPATIALDISCRETIZATIONFORSPATIALDISCRETIZATIONUSUALLYAFINITEVOLUMEORAFINITEELEMENTAPPROXIMATIONISAPPLIEDFORTIMEDISCRETIZATION,HOWEVER,MOSTLYTHEFINITEDIFFERENCEMETHODISUSEDAFEWOFTHEMOSTPOPULARFINITEDIFFERENCEAPPROXIMATIONSARESHOWNINFIG3INADDITIONEXPLICITMULTIPOINTSCHEMESOFRUNGEKUTTATYPEORPREDICTORCORRECTORSCHEMESAREOFTENAPPLIEDFIG2BOUNDARYANDINITIALCONDITIONSFIG3TIMEDISCRETIZATIONSCHEMESITHASTOBEMENTIONEDTHATTHEEXPLICITMETHODSREQUIREARESTRICTIONOFTHETIMESTEPACCORDINGTOSTABILITYCRITERIACFLCRITERIA,WHICHDEPENDONTHELOCALVELOCITIESANDTHELOCALGRIDSIZETHEIMPLICITMETHODS,INCONTRARY,AREALWAYSSTABLE,THEREISNORESTRICTIONOFTHETIMESTEPITCANBECHOSENONLYACCORDINGTOTHEPHYSICALREQUIREMENTSINORDERTOOBTAINACCURATESOLUTIONSTHETIMEDISCRETIZATIONSHOULDBEATLEASTOF2NDORDER,SIMILARTOTHESPATIALDISCRETIZATIONOTHERWISEEXTREMELYSMALLTIMESTEPSWOULDBEREQUIREDTHEABOVEDESCRIPTIONOFTHEFLOWINTHEEULERIANCOORDINATESCANBEAPPLIEDFORUNSTEADYBOUNDARYCONDITIONPROBLEMSASWELLASFORSELFEXCITEDUNSTEADINESSHOWEVER,TOEXPRESSPROBLEMSWITHMOVINGGEOMETRIESINEULERIANCOORDINATESISMOREDIFFICULTATTHEMOVINGBOUNDARYALAGRANGIANDESCRIPTIONCANBEAPPLIEDVERYEASILYSINCETHEFLUIDPARTICLESCANBETRACEDBYTHISMETHODCOMBININGTHESETWOMETHODSANARBITRARYLAGRANGIANEULERIANALEMETHODCANBEUTILIZEDTHISMETHODISSUITABLEFORTHESOLUTIONOFPROBLEMSWITHMOVINGBOUNDARIESINTHEALEMETHODTHEREFERENCECOORDINATESCANBECHOSENARBITRARYINTHISREFERENTIALCOORDINATESYSTEMTHEMATERIALDERIVATIVECANBEDESCRIBEDASJEIJJRILIXT,XFWUTT,XFTT,XF3WITHTHECOORDINATESSCOODDINATEEULERIANXSCOODDINATELREFERENTIAXSCOODDINATELAGRANGIANXEIRILIANDWIREFERENCEVELOCITYTHEMOMENTUMEQUATIONSINTHEALEFORMULATIONCANBEWRITTENASFOLLOWS0XUXUXXP1XUWUTUIJIJJIJIJIJJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE64THEMOVINGOFTHEREFERENCESYSTEMWICANBECHOSENARBITRARYIFWIISEQUALTOZEROONEGETSTHEEULERIANDESCRIPTION,ONTHEOTHERHAND,IFWIISEQUALTOTHEVELOCITYOFTHEFLUIDPARTICLETHELAGRANGIANFORMULATIONISOBTAINEDTHECONVECTIVETERMINTHETRANSPORTEQUATIONSFORSCALARQUANTITIESCHANGESINTHESAMEWAYTHANINTHEMOMENTUMEQUATIONSTHISAPPLIESALSOTOTHEKANDEQUATIONSTHENUMERICALREALIZATIONOFMOVINGORCHANGINGGRIDSCANEITHERBEOBTAINEDBYDEFORMATIONOFANEXISTINGMESHINEACHTIMESTEPFORLARGEDEFORMATIONSTHISREQUIRESANAUTOMATICGRIDSMOOTHINGALGORITHMOREVENANAUTOMATICREMESHINGAFTERAFEWTIMESTEPSANOTHERMETHODISTHEUSEOFDIFFERENTEMBEDDEDGRIDS,WHICHCANMOVEAGAINSTEACHOTHERINTHISCASEASLIDINGINTERFACEBETWEENTHENONMATCHINGGRIDSISREQUIREDTHISPROCEDUREISSCHEMATICALLYSHOWNINFIG4FORTWODIFFERENTPROBLEMS,NAMELYROTORSTATORINTERACTIONANDVIBRATIONOFACYLINDERINAFLUIDINFENFLOSS,THECOMPUTERCODEDEVELOPEDATOURINSTITUTEATUNIVERSITYOFSTUTTGART,THESECONDAPPROACHISAPPLIEDTHEINTERFACEBETWEENTHEGRIDSISREALIZEDBYMEANSOFDYNAMICBOUNDARYCONDITIONS,WHEREDOWNSTREAMTHENODEVALUESVELOCITIESANDTURBULENCEQUANTITIESAREPRESCRIBEDANDUPSTREAMPRESSUREANDFLUXESAREINTRODUCEDASSURFACECONDITIONSABRIEFOVERVIEWONTHENUMERICALPROCEDURESISGIVENIN2,FORMOREDETAILSTHEREADERISREFERREDTO3,4ONEPOINTHASTOBEEMPHASIZEDSINCETHEUNSTEADYSIMULATIONSREQUIREASEVEREINCREASEOFCOMPUTATIONALEFFORTCOMPAREDTOSTEADYSTATESOLUTIONS,PARALLELPROCEDURESARENECESSARYINTHISCASETHEALEFORMULATIONWITHMOVINGGRIDSLEADSTOADYNAMICCHANGEOFCOMMUNICATIONBECAUSETHELOCATIONOFEXCHANGEBOUNDARIESVARIESWITHTIMEANDCANTHEREFORECHANGETHECOMPUTATIONALDOMAINOFTHEPROCESSORS,SEE2INFENFLOSSANIMPLICITSOLUTIONALGORITHMISAPPLIEDASALREADYMENTIONEDTHISHASTHEADVANTAGETHATTHEREISNOSTABILITYLIMITATIONFORTHETIMESTEPTHEOVERALLSOLUTIONPROCEDUREINCLUDINGTHEFLUIDSTRUCTUREINTERACTIONISSHOWNINFIG5IFTHEMOVEMENTOFTHEGRIDDOESNOTDEPENDONTHEFLOWSITUATIONTHEFLUIDSTRUCTURELOOPVANISHESFIG5FLOWCHARTOFFENFLOSSINCLUDINGFLUIDSTRUCTUREINTERACTIONFIG4MOVINGGRIDEXAMPLESAPPLICATIONSINTHEFOLLOWINGSELECTEDAPPLICATIONSARESHOWNANDTHESPECIFICPROBLEMSFORTHISEXAMPLESAREDISCUSSEDFIRSTLYSOMECASESWITHSELFEXCITEDUNSTEADINESSAREPRESENTEDVORTEXSHEDDINGATTHEINLETOFAPOWERPLANTPROBLEMDESCRIPTIONTHEFIRSTEXAMPLESHOWSTHEFLOWBEHAVIORATTHEINLETOFALOWHEADPOWERPLANTITISANEXISTINGPLANTWITHTWOIDENTICALBULBTURBINESDURINGOPERATIONTHEINNERTURBINESHOWEDSEVEREBEARINGPROBLEMSWHEREASTHEOUTERTURBINEOPERATESSMOOTHLYTHEREASONWASEXPECTEDTOBEVORTEXSHEDDINGATTHEINLETBYNUMERICALANALYSISTHEPROBLEMWASINVESTIGATEDANDITWASTRIEDTOFINDASOLUTIONTOTHEPROBLEMINFIG6THEGEOMETRYISSHOWNTHECALCULATIONHASBEENCARRIEDOUTIN2DASWELLASIN3DFIRSTLYITWASTRIEDTOCARRYOUTASTEADYSTATESIMULATION,HOWEVER,NOCONVERGEDSOLUTIONCOULDBEOBTAINEDTHEREFOREANUNSTEADYSIMULATIONWASUNDERTAKENTHERESULTSINDICATEASTRONGUNSTEADYMOTIONINFIG7THEVELOCITYDISTRIBUTIONATACERTAINTIMESTEPISPRESENTEDCLEARLYVISIBLEARETHEVORTICES,SHEDDINGFROMTHEINLETANDMOVINGDOWNSTREAMINTOTHEINNERTURBINETHISISTHEREASONOFTHEDESTRUCTIONOFTHEBEARINGSINORDERTOIMPROVETHEFLOWBEHAVIORAMODIFIEDGEOMETRYWASSUGGESTEDTHISGEOMETRY,SHOWNINFIG8,HASBEENBUILTINTHEMEANTIMETHEREARENOLONGERPROBLEMSWITHVORTEXSHEDDINGFURTHERDETAILSABOUTTHISAPPLICATIONCANBEFOUNDIN5,6DISCUSSIONTHEPHYSICALUNSTEADINESSOFTHEFLOWHASBEENINDICATEDBYTHEINABILITYTOACHIEVEACONVERGEDSTEADYSTATESOLUTIONTHISISVERYOFTENTHECASEWITHFLOWSSHOWINGVORTEXSHEDDINGINREALITYFIG6GEOMETRYOFPOWERPLANTINLETFIG7INSTANTANEOUSVELOCITYVECTORS,VORTEXSHEDDINGATTHEINLETPIERFIG8MODIFIEDGEOMETRYANECESSARYCONDITIONFORTHATIS,THATTHENUMERICALSCHEMEDOESNOTCONTAINSERIOUSARTIFICIALDIFFUSION,WHICHWOULDSUPPRESSTHEUNSTEADYMOTIONTHESAMEAPPLIESTOTHEUSEDTURBULENCEMODELTHESTANDARDKMODELUSUALLYPRODUCESATOOHIGHEDDYVISCOSITY,ESPECIALLYINSWIRLINGFLOWS,ANDTHEREFOREITVERYOFTENSUPPRESSESTHEUNSTEADYMOTIONTHISWILLBEDISCUSSEDAGAININOTHERAPPLICATIONSFORMANYCASESATLEASTASTREAMLINECURVATURECORRECTIONOREVENANONLINEAREDDYVISCOSITYFORMULATIONISNECESSARYINORDERTOAVOIDATOOHIGHTURBULENCEPRODUCTIONANOTHERPOINTINTURBULENCEMODELINGISTHETREATMENTOFTHENEARWALLFLOWITISWELLKNOWNTHATTHEUSEOFWALLFUNCTIONSUSUALLYTENDSTOPREDICTAFLOWSEPARATIONTOOLATEINCASEOFVORTEXSHEDDINGTHISCANCAUSEASEVEREREDUCTIONOFTHEVORTEXSIZESOREVENACOMPLETESUPPRESSIONOFTHEVORTICESMOREACCURATERESULTSCANBEOBTAINEDBYSOLVINGTHEFLOWUPTOTHEWALLIFPOSSIBLEBYALOWREYNOLDSORATWOLAYERMODELTHERESULTSSHOWNABOVEAREACHIEVEDBYANALGEBRAICTURBULENCEMODELBALDWINLOMAXTYPEWHERETHEFLOWISRESOLVEDUPTOTHEWALLVORTEXROPEINADRAFTTUBEPROBLEMDESCRIPTIONASANOTHERSELFEXCITEDUNSTEADYFLOWEXAMPLETHESIMULATIONOFAVORTEXROPEINADRAFTTUBEISSHOWNHEREASTRAIGHTAXISYMMETRICALDIFFUSERISCONSIDEREDTHEINFLOWCONDITIONSTOTHEDIFFUSERARECHOSENACCORDINGTOTHEPARTLOADOPERATIONOFAFRANCISTURBINETHISMEANSTHATTHEFLOWSHOWSASTRONGSWIRLCOMPONENTTHEINLETVELOCITYDISTRIBUTIONANDTHEGEOMETRYAREPRESENTEDINFIG9THEINSTANTANEOUSFLOWFORACERTAINTIMESTEPISGIVENINFIG10,WHEREANISOPRESSURESURFACEASWELLASTHESECONDARYVELOCITYVECTORSINTHREECROSSSECTIONSAREPLOTTEDCLEARLYTHECORKSCREWTYPEFLOWWITHANUNSYMMETRICALFORMISVISIBLE,ALTHOUGHTHEGEOMETRYANDTHEBOUNDARYCONDITIONSARECOMPLETELYAXISYMMETRICALFIG9GEOMETRYANDINLETCONDITIONSFIG10ISOPRESSUREANDSECONDARYFLOWOFAVORTEXROPEINFIG11THESECONDARYVELOCITYANDTHELOWPRESSUREREGION,WHICHREPRESENTSTHEVORTEXCENTER,ISSHOWNINTHECROSSSECTIONS,INDICATEDINFIG9,FORCERTAINTIMESTEPSCLEARLYTHEREVOLUTIONOFTHEVORTEXCENTERCANBEOBSERVEDTHIS,OFCOURSE,CAUSESPRESSUREFLUCTUATIONSANDTHEREFOREDYNAMICALFORCESONTHEDRAFTTUBESURFACEFIG11SECONDARYMOTIONANDLOWPRESSUREREGIONFORDIFFERENTTIMESTEPSDISCUSSIONCONCERNINGTHENUMERICALSCHEMEANDTHETURBULENCEMODELSTHEDISCUSSIONABOVEALSOAPPLIESHERE,EGAPPLICATIONOFTHESTANDARDKMODELLEADSTOASTEADYSTATE,SYMMETRICALSOLUTIONTHISISALSOREPORTEDIN7THERESULTSSHOWNABOVEAREACHIEVEDBYAPPLYINGTHEMULTISCALEKMODELOFKIM8TOGETHERWITHASTREAMLINECURVATURECORRECTIONTHISMODELSHOWSAMUCHLOWEREDDYVISCOSITYTHANTHESTANDARDMODEL,ESPECIALLYINSWIRLINGFLOWSTHEAPPLICATIONOFWALLFUNCTIONSDOESNOTGIVEANYPROBLEMSHERE,SINCETHEFLOWINSTABILITYHASITSORIGININTHECENTERANDISNOTAFFECTEDBYTHEPREDICTIONOFTHENEARWALLREGIONVORTEXINSTABILITYINAPIPETRIFURCATIONPROBLEMDESCRIPTIONINTHEFOLLOWINGANOTHERPROBLEMCAUSEDBYAVORTEXINSTABILITYISSHOWNITISAPIPETRIFURCATION,WHICHISESTABLISHEDINAPOWERPLANTINNEPALTHETRIFURCATIONDISTRIBUTESTHEWATERFROMTHEPENSTOCKTOTHETHREETURBINEUNITSTHEPROBLEMINTHISPLANTARISESFROMSEVEREFLUCTUATIONSOFTHEPOWEROUTPUTOFTHEBOTHOUTERTURBINESBYFIELDMEASUREMENTSTHETRIFURCATIONWASDISCOVEREDASTHEREASONFORTHEFLUCTUATIONSBYMEANSOFCFDANDBYMODELTESTS,CARRIEDOUTATASTROEINGRAZ,THEFLOWBEHAVIORSHOULDBEANALYZEDANDACUREOFTHEPROBLEMSHOULDBEFOUNDTHEGEOMETRYOFTHETRIFURCATIONISSHOWNINFIG12ITHASASPHERICALSHAPETHEFLUCTUATIONINTHETRIFURCATIONISCAUSEDBYASTRONGVORTEX,WHICHTENDSTOBEUNSTABLEITSKIPSBETWEENTHETWOSITUATIONS,SKETCHEDINFIG13INTHEMODELTESTSTHESECONDARYVELOCITYOFTHEVORTEXCOULDBEFOUNDTOBE30TIMESHIGHERTHANTHETRANSPORTVELOCITYTHEREASONISTHATATTHETOPOFTHESPHERETHEREISENOUGHSPACEFORAHUGEVORTEXTOFORMTHISVORTEXCONCENTRATESINTHESIDEBRANCHESANDTHEREFOREINCREASESTHESWIRLINTENSITYBECAUSEOFTHISSTRONGSECONDARYMOTIONTHEREARESTRONGLOSSESATTHEINLETOFTHEBRANCH,WHICHREDUCESTHEHEADOFTHETURBINEANDTHEREFORECAUSESTHEREDUCTIONOFPOWEROUTPUTDURINGTHEPROJECTITWASTRIEDTOOBTAINTHEUNSTEADYBEHAVIORBYAKSIMULATIONONRELATIVELYCOARSEGRIDS200300000NODESHOWEVER,THESECALCULATIONSDIDNOTSHOWTHEVORTEXINSTABILITYMERELYAVORTEXFORMSWHICHEXTENDSFROMONESIDEBRANCHTOTHEOTHERTHESWIRLINTENSITYWASUNDERPREDICTEDBYMORETHANAFACTORFIVEBECAUSEOFTHELOWSWIRLRATETHEVORTEXISCOMPLETELYSTABLEANDHASNOTENDENCYOFSKIPPINGBETWEENDIFFERENTSTATIONSEVENBYADYNAMICALEXCITATIONCAUSEDBYCHANGESOFTHEOUTLETBOUNDARYCONDITIONOFONEBRANCHTHEPREDICTEDVORTEXDIDNOTCHANGEITSPOSITIONONLYWHENAPPLYINGFINERGRIDSANDANOTHERTURBULENCEMODELTHEPREDICTEDSWIRLINTENSITYCOULDBEINCREASEDHEREANALGEBRAICTURBULENCEMODELWITHALIMITATIONOFTHEEDDYVISCOSITYISAPPLIEDTHEUSEDGRIDSCONSISTSOFABOUT500000NODESASACONSEQUENCETHISLEADSTOANINSTABILITYOFTHEVORTEXINTHEPREDICTIONTHEVORTEXSKIPSBETWEENTHETWOSTRUCTURESSHOWNINFIG14ONEOFTHESESTRUCTURESCORRESPONDSQUITEWELLWITHTHESTRUCTUREOBSERVEDINTHEMODELTESTSINTHESECONDSITUATIONTHEVORTEXEXPENDSFROMONESIDEBRANCHTOTHEOTHERTHISCOMPLIESWITHTHEABOVEMENTIONEDSTABLERESULTSTHECALCULATEDSWIRLINTENSITYISSTILLMORETHANTWOTIMESLOWERCOMPAREDTOTHERESULTSOFTHEMODELTESTSTHEREFOREFURTHERINVESTIGAFIG12GEOMETRYOFTHETRIFURCATIONFIG13VORTEXSTRUCTURETIONSWITHOTHERTURBULENCEMODELSANDWITHFINERGRIDSARENECESSARYANDWILLBECARRIEDOUTINFUTUREFIG14PREDICTEDVORTEXSTRUCTURESFORCOMPLETENESSTHESOLUTIONTOTHEPROBLEMISSHOWNITCONSISTSOFTHEINSTALLATIONOFTWOPLATESINTHEUPPERANDLOWERPARTOFTHESPHERETHISISSHOWNINFIG15HENCENOFREESPACEISAVAILABLE,WHERETHEVORTEXCANFORMCONSEQUENTLYTHEINTENSITYOFTHEVORTEXISDRAMATICALLYREDUCEDANDTHEVORTEXISCOMPLETELYSTABLEINTHEMEANTIMETHERECONSTRUCTIONWASCARRIEDOUTANDTHEFLUCTUATIONOFTHEPOWEROUTPUTVANISHEDASABYPRODUCTTHELOSSESINTHETRIFURCATIONARESEVERELYREDUCED,WHICHRESULTSINANINCREASEOFPOWEROUTPUTOFAPPROXIMATELY5FURTHERDETAILSOFTHISPROBLEMCANBEFOUNDIN9,10DISCUSSIONASALREADYMENTIONEDTHECALCULATIONSUSINGTHEKMODELWERENOTSUCCESSFULITISWELLKNOWNTHATTHISMODELISNOTABLETOPREDICTHIGHLYSWIRLINGFLOWSACCURATELYTHEUNSTEADYMOTIONOFTHEVORTICESESPECIALLYOFVERYSLIMVORTICES,HOWEVER,VERYMUCHDEPENDSONTHESWIRLINTENSITYINORDERTOPRESCRIBESUCHTYPESOFFLOWWITHSUFFICIENTACCURACYITISNECESSARYTOHAVEHIGHLYSOPHISTICATEDTURBULENCEMODELSANDVERYFINEGRIDS,MAYBETHEONLYWAYTOACHIEVEITISTHEAPPLICATIONOFLARGEEDDYSIMULATIONROTORSTATORINTERACTIONINANAXIALTUBINETHEFOLLOWINGEXAMPLEBELONGSTOTHESECONDGROUP,THEUNSTEADINESSISFORCEDBYMOVINGGEOMETRIESTHEPROBLEMINQUESTIONISTHEFIG15MODIFIEDGEOMETRYFIG16GEOMETRYOFTHEINVESTIGATEDAXIALTURBINEFLOWINANAXIALTURBINETHESPECIALITYOFTHISTURBINEISITSRELATIVELYLOWSPECIFICSPEEDITHASBEENDESIGNEDFORPRESSURERECUPERATIONINPIPINGSYSTEMSTHEADVANTAGEISTHATTHEDISCHARGEISNEARLYINDEPENDENTOFTHESPEED,BECAUSEOFTHATTHETURBINECANNOTINTRODUCEWATERHAMMERSINTHESYSTEMTHEGEOMETRYOFTHETURBINEISSHOWNINFIG16ITCONSISTSOFTHEINLETCONFUSER,12FIXEDGUIDEVANES,15RUNNERBLADESANDTHEDRAFTTUBETHESTATORANDROTORPARTISSHOWNINMOREDETAILINFIG17FORTHESIMULATIONTHECOMPLETETURBINEISCONSIDEREDINCLUDINGALLFLOWCHANNELSINTHEGUIDEVANESANDINTHERUNNER,ALTHOUGHASYMMETRYCONDITIONOF120COULDBEUSEDTHEREASONIS,THATALSOAVARIANTWITHUNSYMMETRICALOUTLETHASBEENINVESTIGATEDTHECOMPUTATIONALMESHCONSISTSOFMORETHAN2MILLIONGRIDNODES,PARTOFTHEGRIDISSHOWNINFIG18THESEAREROUGHLY60000NODESPERFLOWCHANNELITISARATHERCOARSEGRID,CONSIDERINGTHATTHECLEARANCEBETWEENRUNNERBLADESANDCASINGHASTOBEINCLUDEDINTHEMODEL,WHICHISNECESSARYSINCETHECLEARANCEFLOWVERYMUCHAFFECTSTHECHANNELFLOWBECAUSEOFTHESHORTRUNNERBLADESTHECALCULATIONSARECARRIEDOUTUSINGTHESTANDARDKMODELINTHEFOLLOWINGSOMERESULTSOFTHECALCULATIONWILLBESHOWNINFIG19THEINSTANTANEOUSFLOWINTHERUNNERISPRESENTEDTHEFIGURESHOWSTHEPRESSUREDISTRIBUTIONOFTHERUNNERSURFACEASWELLASSTREAMLINESSTARTEDATDIFFERENTLOCATIONSLOOKINGATTHEPRESSUREONECLEARLYSEESTHESTAGNATIONPOINTATTHELEADINGEDGETHELOCATIONOFTHEDRAFTTUBEGUIDEVANESRUNNERFIG18PARTOFTHECOMPUTATIONALMESHFIG17GEOMETRYOFROTORANDSTATORFIG19INSTANTANEOUSFLOWINTHERUNNERSTAGNATIONPOINTVARIESSLIGHTLYWITHTHERUNNERPOSITIONGENERALLYTHEINLETFLOWANGLESEEMSTOBESLIGHTLYTOOFLATTHEREFORETHESTAGNATIONPOINTISSHIFTEDTOWARDSTHESUCTIONSIDECONSIDERINGTHEFLOWINTHETIPCLEARANCEONECANOBSERVETHATATTHEINLETTHESHEARFORCESDOMINATETHEFLOWTENDSTOGOFROMTHESUCTIONTOTHEPRESSURESIDEINTHESECONDHALFOFTHEBLADETHEPRESSUREFORCESDOMINATETHEFLOWINTHECLEARANCEGOESFROMTHEPRESSURETOTHESUCTIONSIDEITCANALREADYBESEENBYTHISRESULTSTHATTHEDESIGNOFTHERUNNERISNOTOPTIMALTHISISAFIRSTVERSION,INTHEMEANTIMEAMUCHBETTERRUNNERHASBEENDESIGNEDHOWEVERTHISGEOMETRYISNUMERICALLYINVESTIGATEDSINCEEXTENSIVEMEASUREMENTSHAVEBEENCARRIEDOUTFORTHISCONFIGURATIONANDTHENUMERICALRESULTSCANBEVALIDATEDINFIG20AGAINTHEINSTANTANEOUSPRESSUREFORACERTAINTIMESTEPISSHOWNONECANOBSERVETHELOWPRESSUREREGIONONTHESUCTIONSIDEATTHETOPOFTHERUNNERBLADESCLEARLYVISIBLEISTHEVARIATIONOFTHEPRESSUREWITHTHEPOSITIONTHELOWPRESSUREREGIONCORRESPONDSQUITEWELLWITHTHECAVITATIONOBSERVATIONATTHETESTRIG,SEEFIG21THEREONEALSOCANOBSERVETHEVARIATIONOFTHECAVITATIONBUBBLESACCORDINGTOTHERUNNERPOSITIONASAQUANTITATIVECOMPARISONTHEPRESSUREATTWOLOCATIONSISSHOWNINFIG22POSITION1ISLOCATEDINFRONTOFTHEGUIDEVANESANDTHESECONDPOSITIONLIESBETWEENTHEGUIDEVANESANDTHERUNNERATBOTHLOCATIONSTHEMEASUREDANDTHECALCULATEDPRESSURECORRESPONDSQUITEWELLONECANSEETHATEVENINFRONTOFTHEGUIDEVANESPRESSUREFLUCTUATIONSCANBEOBSERVEDBETWEENTHESTATORFIG20CALCULATEDPRESSUREDISTRIBUTIONFORACERTAINRUNNERPOSITIONFIG21CAVITATIONOBSERVATIONINTHERUNNERFIG22PRESSUREDISTRIBUTIONATTWOSPOTPOINTSANDTHEROTORFLUCTUATIONSOFNEARLY25OFTHEHEADOFTHETURBINECANBESEENTHIS,OFCOURSE,LEADSTODYNAMICALFORCESONTHEBLADESINFIG23THETORQUEONONERUNNERBLADEASWELLASTHETORQUEOFTHECOMPLETERUNNERISSHOWNTHECALCULATEDTORQUEFLUCTUATIONONASINGLEBLADEARENEARLY30OFTHEAVERAGEDTORQUETHISISADYNAMICALFORCEONTHEBLADINGTHETOTALTORQUE,HOWEVER,ISNEARLYCONSTANTDUETOTHEGREATNUMBEROFBLADESANDDUETODIFFERENTPHASESOFTHEFLUCTUATIO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小熊的春节冒险
- 小猫的元旦新冒险
- 关于假睫毛的教程
- 基于BIM的地下管线管理案例分析
- 可持续发展的土木工程案例
- 肺裂伤及护理方法
- 防水保护层施工时机技术解析
- 保险公司护士节活动方案
- 保险公司签到活动方案
- 保险公司过年拓客活动方案
- 【MOOC】《概率论与数理统计》(电子科技大学)中国大学慕课MOOC答案
- 医疗质控员培训
- 读书笔记:明冬亮《系统之美:决策者的系统思考》
- T-GDJD 002-2024 电茶壶电水壶专用耦合器
- 数字经济与产业链创新
- T-CNCIA 01033-2024 涂料用水性羟基丙烯酸树脂
- 医院培训课件:《医院感染管理制度与职责》
- 【MOOC】实境英语听说-河南大学 中国大学慕课MOOC答案
- 问卷调查设计及研究方法(浙江大学)知到智慧树章节答案
- 《冰川地貌》课件
- 脑瘤手术后护理
评论
0/150
提交评论