




文档简介
UNSTEADYFLOWANALYSISINHYDRAULICTURBOMACHINERYALBERTRUPRECHTINSTITUTEOFFLUIDMECHANICSANDHYDRAULICMACHINERYUNIVERSITYOFSTUTTGART,GERMANYABSTRACTINTHEFIELDOFHYDRAULICMACHINERYCOMPUTATIONALFLUIDDYNAMICSCFDISROUTINELYUSEDTODAYINRESEARCHANDDEVELOPMENTASWELLASINDESIGNATTHATNEARLYALWAYSSTEADYSTATESIMULATIONSAREAPPLIEDINTHISPAPER,HOWEVER,UNSTEADYSIMULATIONSARESHOWNFORDIFFERENTEXAMPLESTHEPRESENTEDEXAMPLESCONTAINAPPLICATIONSWITHSELFEXCITEDUNSTEADINESS,EGVORTEXSHEDDINGORVORTEXROPEINTHEDRAFTTUBE,ASWELLASAPPLICATIONSWITHEXTERNALLYFORCEDUNSTEADINESSBYCHANGINGORMOVINGGEOMETRIES,EGROTORSTATORINTERACTIONSFORTHESEEXAMPLESTHEREQUIREMENTS,POTENTIALANDLIMITATIONSOFUNSTEADYFLOWANALYSISASSESSEDPARTICULARLYTHEDEMANDSONTHETURBULENCEMODELSANDTHENECESSARYCOMPUTATIONALEFFORTSAREDISCUSSEDINTRODUCTIONFORMORETHANADECADECOMPUTATIONALFLUIDDYNAMICSCFDISUSEDINTHEFIELDOFHYDRAULICMACHINERYINRESEARCHANDDEVELOPMENTASWELLASINTHEDAILYDESIGNBUSINESSEARLYSUCCESSFULDEMONSTRATIONSAREGIVENEGINTHEGAMMWORKSHOP1THEAPPLICATIONSARESTEADILYINCREASINGTHISISEXPRESSEDINFIG1,WHERETHEPERCENTAGEOFPAPERSDEALINGWITHCFDISSHOWN,WHICHWEREPRESENTEDATTHEIAHRSYMPOSIUMONHYDRAULICMACHINERYANDCAVITATIONSTARTINGWITHQ3DEULERAND3DEULERTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSTOGETHERWITHAROBUSTMODELOFTURBULENCEUSUALLYTHEKMODELISUSEDITISCOMMONPRACTICETOAPPLYSTEADYSTATESIMULATIONS,THEUNSTEADINESSINCONSEQUENCEOFTHEROTORSTATORINTERACTIONSISADDRESSEDBYAVERAGINGPROCEDURESBYTHISMETHODACCURATERESULTSAREOBTAINEDFORMANYQUESTIONSINTHEDESIGNOFCOMPONENTSHOWEVER,DIFFERENTPROBLEMSINTURBOMACHINERYARISEFROMUNSTEADYFLOWPHENOMENAINORDERTOGETINFORMATIONONTHISPHENOMENAORSOLUTIONSTOTHEPROBLEMSANUNSTEADYFLOWANALYSISISNECESSARYTHISREQUIRESAMUCHHIGHERCOMPUTATIONALEFFORT,ROUGHLYAFACTOR510COMPAREDTOSTEADYSTATE,DEPENDINGOFTHEPROBLEMANDOFTHEDEGREEOFMODELINGASSUMPTIONSWITHTODAYSCOMPUTERSANDSOFTWARE,HOWEVER,UNSTEADYPROBLEMSCANBESOLVEDFIG1PERCENTAGEOFPAPERSATTHEIAHRSYMPOSIUMDEALINGWITHCFDTWOMAJORGROUPSOFUNSTEADYPROBLEMSCANBEDISTINGUISHEDTHEFIRSTGROUPAREFLOWSWITHANEXTERNALLYFORCEDUNSTEADINESSTHISCANBECAUSEDBYUNSTEADYBOUNDARYCONDITIONSORBYCHANGINGOFTHEGEOMETRYWITHTIMEEXAMPLESARETHECLOSUREOFAVALVE,THECHANGEOFTHEFLOWDOMAININAPISTONPUMP,ORTHEROTORSTATORINTERACTIONSTHESECONDGROUPAREFLOWSWITHSELFEXCITEDUNSTEADINESS,WHICHAREEGTURBULENTMOTION,VORTEXSHEDDINGKARMANVORTEXSTREETORUNSTEADYVORTEXBEHAVIOREGVORTEXROPEINADRAFTTUBEHERETHEUNSTEADINESSISOBTAINEDWITHOUTANYCHANGEOFTHEBOUNDARYCONDITIONSOROFTHEGEOMETRYTHERECANALSOOCCURACOMBINATIONOFBOTHGROUPSEGFLOWINDUCEDVIBRATIONS,CHANGEOFGEOMETRYCAUSEDBYVORTEXSHEDDINGALLTHESEPHENOMENACANTAKEPLACEINATURBINEORPUMPANDREQUIREDIFFERENTSOLUTIONPROCEDURESBASICEQUATIONSANDNUMERICALPROCEDURESINHYDRAULICTURBOMACHINERYTODAYUSUALLYTHEREYNOLDSAVERAGEDNAVIERSTOKESEQUATIONSFORANINCOMPRESSIBLEFLOWAREAPPLIEDCOMPAREDTOTHESTEADYSTATETHEMOMENTUMEQUATIONSCONTAINANADDITIONALTERMPRESCRIBINGTHEUNSTEADYCHANGE0XUXUXXP1XUUTUIJIJJIJIJIJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE61IJARETHEREYNOLDSSTRESSES,WHICHARECALCULATEDFROMTHETURBULENCEMODELTHECONTINUITYEQUATIONFORINCOMPRESSIBLEFLOWREADS0XUII2ANDDOESNOTCONTAINATIMEDEPENDINGTERMITHASTOBEEMPHASIZEDTHATTHEEQUATIONS1AND2BEHAVESDIFFERENTINTIMEANDINSPACEINSPACETHEYSHOWELLIPTICBEHAVIOR,THEREFORETHEYREQUIREBOUNDARYCONDITIONSONALLSURFACESINTIME,HOWEVER,THEYAREOFPARABOLICNATURE,WHICHMEANTHATTHEREISNOFEEDBACKFROMTHEFUTURETOTHEPRESENTORPASTBECAUSEOFTHATNOBOUNDARYCONDITIONSAREREQUIREDINTHEFUTURETHISISSCHEMATICALLYSHOWNINFIG2THISISTHEREASON,WHYTHETIMEDISCRETIZATIONISGENERALLYCARRIEDOUTINADIFFERENTWAYTHANTHESPATIALDISCRETIZATIONFORSPATIALDISCRETIZATIONUSUALLYAFINITEVOLUMEORAFINITEELEMENTAPPROXIMATIONISAPPLIEDFORTIMEDISCRETIZATION,HOWEVER,MOSTLYTHEFINITEDIFFERENCEMETHODISUSEDAFEWOFTHEMOSTPOPULARFINITEDIFFERENCEAPPROXIMATIONSARESHOWNINFIG3INADDITIONEXPLICITMULTIPOINTSCHEMESOFRUNGEKUTTATYPEORPREDICTORCORRECTORSCHEMESAREOFTENAPPLIEDFIG2BOUNDARYANDINITIALCONDITIONSFIG3TIMEDISCRETIZATIONSCHEMESITHASTOBEMENTIONEDTHATTHEEXPLICITMETHODSREQUIREARESTRICTIONOFTHETIMESTEPACCORDINGTOSTABILITYCRITERIACFLCRITERIA,WHICHDEPENDONTHELOCALVELOCITIESANDTHELOCALGRIDSIZETHEIMPLICITMETHODS,INCONTRARY,AREALWAYSSTABLE,THEREISNORESTRICTIONOFTHETIMESTEPITCANBECHOSENONLYACCORDINGTOTHEPHYSICALREQUIREMENTSINORDERTOOBTAINACCURATESOLUTIONSTHETIMEDISCRETIZATIONSHOULDBEATLEASTOF2NDORDER,SIMILARTOTHESPATIALDISCRETIZATIONOTHERWISEEXTREMELYSMALLTIMESTEPSWOULDBEREQUIREDTHEABOVEDESCRIPTIONOFTHEFLOWINTHEEULERIANCOORDINATESCANBEAPPLIEDFORUNSTEADYBOUNDARYCONDITIONPROBLEMSASWELLASFORSELFEXCITEDUNSTEADINESSHOWEVER,TOEXPRESSPROBLEMSWITHMOVINGGEOMETRIESINEULERIANCOORDINATESISMOREDIFFICULTATTHEMOVINGBOUNDARYALAGRANGIANDESCRIPTIONCANBEAPPLIEDVERYEASILYSINCETHEFLUIDPARTICLESCANBETRACEDBYTHISMETHODCOMBININGTHESETWOMETHODSANARBITRARYLAGRANGIANEULERIANALEMETHODCANBEUTILIZEDTHISMETHODISSUITABLEFORTHESOLUTIONOFPROBLEMSWITHMOVINGBOUNDARIESINTHEALEMETHODTHEREFERENCECOORDINATESCANBECHOSENARBITRARYINTHISREFERENTIALCOORDINATESYSTEMTHEMATERIALDERIVATIVECANBEDESCRIBEDASJEIJJRILIXT,XFWUTT,XFTT,XF3WITHTHECOORDINATESSCOODDINATEEULERIANXSCOODDINATELREFERENTIAXSCOODDINATELAGRANGIANXEIRILIANDWIREFERENCEVELOCITYTHEMOMENTUMEQUATIONSINTHEALEFORMULATIONCANBEWRITTENASFOLLOWS0XUXUXXP1XUWUTUIJIJJIJIJIJJIGF7GF7GF8GF6GE7GE7GE8GE6GF7GF7GF8GF6GE7GE7GE8GE64THEMOVINGOFTHEREFERENCESYSTEMWICANBECHOSENARBITRARYIFWIISEQUALTOZEROONEGETSTHEEULERIANDESCRIPTION,ONTHEOTHERHAND,IFWIISEQUALTOTHEVELOCITYOFTHEFLUIDPARTICLETHELAGRANGIANFORMULATIONISOBTAINEDTHECONVECTIVETERMINTHETRANSPORTEQUATIONSFORSCALARQUANTITIESCHANGESINTHESAMEWAYTHANINTHEMOMENTUMEQUATIONSTHISAPPLIESALSOTOTHEKANDEQUATIONSTHENUMERICALREALIZATIONOFMOVINGORCHANGINGGRIDSCANEITHERBEOBTAINEDBYDEFORMATIONOFANEXISTINGMESHINEACHTIMESTEPFORLARGEDEFORMATIONSTHISREQUIRESANAUTOMATICGRIDSMOOTHINGALGORITHMOREVENANAUTOMATICREMESHINGAFTERAFEWTIMESTEPSANOTHERMETHODISTHEUSEOFDIFFERENTEMBEDDEDGRIDS,WHICHCANMOVEAGAINSTEACHOTHERINTHISCASEASLIDINGINTERFACEBETWEENTHENONMATCHINGGRIDSISREQUIREDTHISPROCEDUREISSCHEMATICALLYSHOWNINFIG4FORTWODIFFERENTPROBLEMS,NAMELYROTORSTATORINTERACTIONANDVIBRATIONOFACYLINDERINAFLUIDINFENFLOSS,THECOMPUTERCODEDEVELOPEDATOURINSTITUTEATUNIVERSITYOFSTUTTGART,THESECONDAPPROACHISAPPLIEDTHEINTERFACEBETWEENTHEGRIDSISREALIZEDBYMEANSOFDYNAMICBOUNDARYCONDITIONS,WHEREDOWNSTREAMTHENODEVALUESVELOCITIESANDTURBULENCEQUANTITIESAREPRESCRIBEDANDUPSTREAMPRESSUREANDFLUXESAREINTRODUCEDASSURFACECONDITIONSABRIEFOVERVIEWONTHENUMERICALPROCEDURESISGIVENIN2,FORMOREDETAILSTHEREADERISREFERREDTO3,4ONEPOINTHASTOBEEMPHASIZEDSINCETHEUNSTEADYSIMULATIONSREQUIREASEVEREINCREASEOFCOMPUTATIONALEFFORTCOMPAREDTOSTEADYSTATESOLUTIONS,PARALLELPROCEDURESARENECESSARYINTHISCASETHEALEFORMULATIONWITHMOVINGGRIDSLEADSTOADYNAMICCHANGEOFCOMMUNICATIONBECAUSETHELOCATIONOFEXCHANGEBOUNDARIESVARIESWITHTIMEANDCANTHEREFORECHANGETHECOMPUTATIONALDOMAINOFTHEPROCESSORS,SEE2INFENFLOSSANIMPLICITSOLUTIONALGORITHMISAPPLIEDASALREADYMENTIONEDTHISHASTHEADVANTAGETHATTHEREISNOSTABILITYLIMITATIONFORTHETIMESTEPTHEOVERALLSOLUTIONPROCEDUREINCLUDINGTHEFLUIDSTRUCTUREINTERACTIONISSHOWNINFIG5IFTHEMOVEMENTOFTHEGRIDDOESNOTDEPENDONTHEFLOWSITUATIONTHEFLUIDSTRUCTURELOOPVANISHESFIG5FLOWCHARTOFFENFLOSSINCLUDINGFLUIDSTRUCTUREINTERACTIONFIG4MOVINGGRIDEXAMPLESAPPLICATIONSINTHEFOLLOWINGSELECTEDAPPLICATIONSARESHOWNANDTHESPECIFICPROBLEMSFORTHISEXAMPLESAREDISCUSSEDFIRSTLYSOMECASESWITHSELFEXCITEDUNSTEADINESSAREPRESENTEDVORTEXSHEDDINGATTHEINLETOFAPOWERPLANTPROBLEMDESCRIPTIONTHEFIRSTEXAMPLESHOWSTHEFLOWBEHAVIORATTHEINLETOFALOWHEADPOWERPLANTITISANEXISTINGPLANTWITHTWOIDENTICALBULBTURBINESDURINGOPERATIONTHEINNERTURBINESHOWEDSEVEREBEARINGPROBLEMSWHEREASTHEOUTERTURBINEOPERATESSMOOTHLYTHEREASONWASEXPECTEDTOBEVORTEXSHEDDINGATTHEINLETBYNUMERICALANALYSISTHEPROBLEMWASINVESTIGATEDANDITWASTRIEDTOFINDASOLUTIONTOTHEPROBLEMINFIG6THEGEOMETRYISSHOWNTHECALCULATIONHASBEENCARRIEDOUTIN2DASWELLASIN3DFIRSTLYITWASTRIEDTOCARRYOUTASTEADYSTATESIMULATION,HOWEVER,NOCONVERGEDSOLUTIONCOULDBEOBTAINEDTHEREFOREANUNSTEADYSIMULATIONWASUNDERTAKENTHERESULTSINDICATEASTRONGUNSTEADYMOTIONINFIG7THEVELOCITYDISTRIBUTIONATACERTAINTIMESTEPISPRESENTEDCLEARLYVISIBLEARETHEVORTICES,SHEDDINGFROMTHEINLETANDMOVINGDOWNSTREAMINTOTHEINNERTURBINETHISISTHEREASONOFTHEDESTRUCTIONOFTHEBEARINGSINORDERTOIMPROVETHEFLOWBEHAVIORAMODIFIEDGEOMETRYWASSUGGESTEDTHISGEOMETRY,SHOWNINFIG8,HASBEENBUILTINTHEMEANTIMETHEREARENOLONGERPROBLEMSWITHVORTEXSHEDDINGFURTHERDETAILSABOUTTHISAPPLICATIONCANBEFOUNDIN5,6DISCUSSIONTHEPHYSICALUNSTEADINESSOFTHEFLOWHASBEENINDICATEDBYTHEINABILITYTOACHIEVEACONVERGEDSTEADYSTATESOLUTIONTHISISVERYOFTENTHECASEWITHFLOWSSHOWINGVORTEXSHEDDINGINREALITYFIG6GEOMETRYOFPOWERPLANTINLETFIG7INSTANTANEOUSVELOCITYVECTORS,VORTEXSHEDDINGATTHEINLETPIERFIG8MODIFIEDGEOMETRYANECESSARYCONDITIONFORTHATIS,THATTHENUMERICALSCHEMEDOESNOTCONTAINSERIOUSARTIFICIALDIFFUSION,WHICHWOULDSUPPRESSTHEUNSTEADYMOTIONTHESAMEAPPLIESTOTHEUSEDTURBULENCEMODELTHESTANDARDKMODELUSUALLYPRODUCESATOOHIGHEDDYVISCOSITY,ESPECIALLYINSWIRLINGFLOWS,ANDTHEREFOREITVERYOFTENSUPPRESSESTHEUNSTEADYMOTIONTHISWILLBEDISCUSSEDAGAININOTHERAPPLICATIONSFORMANYCASESATLEASTASTREAMLINECURVATURECORRECTIONOREVENANONLINEAREDDYVISCOSITYFORMULATIONISNECESSARYINORDERTOAVOIDATOOHIGHTURBULENCEPRODUCTIONANOTHERPOINTINTURBULENCEMODELINGISTHETREATMENTOFTHENEARWALLFLOWITISWELLKNOWNTHATTHEUSEOFWALLFUNCTIONSUSUALLYTENDSTOPREDICTAFLOWSEPARATIONTOOLATEINCASEOFVORTEXSHEDDINGTHISCANCAUSEASEVEREREDUCTIONOFTHEVORTEXSIZESOREVENACOMPLETESUPPRESSIONOFTHEVORTICESMOREACCURATERESULTSCANBEOBTAINEDBYSOLVINGTHEFLOWUPTOTHEWALLIFPOSSIBLEBYALOWREYNOLDSORATWOLAYERMODELTHERESULTSSHOWNABOVEAREACHIEVEDBYANALGEBRAICTURBULENCEMODELBALDWINLOMAXTYPEWHERETHEFLOWISRESOLVEDUPTOTHEWALLVORTEXROPEINADRAFTTUBEPROBLEMDESCRIPTIONASANOTHERSELFEXCITEDUNSTEADYFLOWEXAMPLETHESIMULATIONOFAVORTEXROPEINADRAFTTUBEISSHOWNHEREASTRAIGHTAXISYMMETRICALDIFFUSERISCONSIDEREDTHEINFLOWCONDITIONSTOTHEDIFFUSERARECHOSENACCORDINGTOTHEPARTLOADOPERATIONOFAFRANCISTURBINETHISMEANSTHATTHEFLOWSHOWSASTRONGSWIRLCOMPONENTTHEINLETVELOCITYDISTRIBUTIONANDTHEGEOMETRYAREPRESENTEDINFIG9THEINSTANTANEOUSFLOWFORACERTAINTIMESTEPISGIVENINFIG10,WHEREANISOPRESSURESURFACEASWELLASTHESECONDARYVELOCITYVECTORSINTHREECROSSSECTIONSAREPLOTTEDCLEARLYTHECORKSCREWTYPEFLOWWITHANUNSYMMETRICALFORMISVISIBLE,ALTHOUGHTHEGEOMETRYANDTHEBOUNDARYCONDITIONSARECOMPLETELYAXISYMMETRICALFIG9GEOMETRYANDINLETCONDITIONSFIG10ISOPRESSUREANDSECONDARYFLOWOFAVORTEXROPEINFIG11THESECONDARYVELOCITYANDTHELOWPRESSUREREGION,WHICHREPRESENTSTHEVORTEXCENTER,ISSHOWNINTHECROSSSECTIONS,INDICATEDINFIG9,FORCERTAINTIMESTEPSCLEARLYTHEREVOLUTIONOFTHEVORTEXCENTERCANBEOBSERVEDTHIS,OFCOURSE,CAUSESPRESSUREFLUCTUATIONSANDTHEREFOREDYNAMICALFORCESONTHEDRAFTTUBESURFACEFIG11SECONDARYMOTIONANDLOWPRESSUREREGIONFORDIFFERENTTIMESTEPSDISCUSSIONCONCERNINGTHENUMERICALSCHEMEANDTHETURBULENCEMODELSTHEDISCUSSIONABOVEALSOAPPLIESHERE,EGAPPLICATIONOFTHESTANDARDKMODELLEADSTOASTEADYSTATE,SYMMETRICALSOLUTIONTHISISALSOREPORTEDIN7THERESULTSSHOWNABOVEAREACHIEVEDBYAPPLYINGTHEMULTISCALEKMODELOFKIM8TOGETHERWITHASTREAMLINECURVATURECORRECTIONTHISMODELSHOWSAMUCHLOWEREDDYVISCOSITYTHANTHESTANDARDMODEL,ESPECIALLYINSWIRLINGFLOWSTHEAPPLICATIONOFWALLFUNCTIONSDOESNOTGIVEANYPROBLEMSHERE,SINCETHEFLOWINSTABILITYHASITSORIGININTHECENTERANDISNOTAFFECTEDBYTHEPREDICTIONOFTHENEARWALLREGIONVORTEXINSTABILITYINAPIPETRIFURCATIONPROBLEMDESCRIPTIONINTHEFOLLOWINGANOTHERPROBLEMCAUSEDBYAVORTEXINSTABILITYISSHOWNITISAPIPETRIFURCATION,WHICHISESTABLISHEDINAPOWERPLANTINNEPALTHETRIFURCATIONDISTRIBUTESTHEWATERFROMTHEPENSTOCKTOTHETHREETURBINEUNITSTHEPROBLEMINTHISPLANTARISESFROMSEVEREFLUCTUATIONSOFTHEPOWEROUTPUTOFTHEBOTHOUTERTURBINESBYFIELDMEASUREMENTSTHETRIFURCATIONWASDISCOVEREDASTHEREASONFORTHEFLUCTUATIONSBYMEANSOFCFDANDBYMODELTESTS,CARRIEDOUTATASTROEINGRAZ,THEFLOWBEHAVIORSHOULDBEANALYZEDANDACUREOFTHEPROBLEMSHOULDBEFOUNDTHEGEOMETRYOFTHETRIFURCATIONISSHOWNINFIG12ITHASASPHERICALSHAPETHEFLUCTUATIONINTHETRIFURCATIONISCAUSEDBYASTRONGVORTEX,WHICHTENDSTOBEUNSTABLEITSKIPSBETWEENTHETWOSITUATIONS,SKETCHEDINFIG13INTHEMODELTESTSTHESECONDARYVELOCITYOFTHEVORTEXCOULDBEFOUNDTOBE30TIMESHIGHERTHANTHETRANSPORTVELOCITYTHEREASONISTHATATTHETOPOFTHESPHERETHEREISENOUGHSPACEFORAHUGEVORTEXTOFORMTHISVORTEXCONCENTRATESINTHESIDEBRANCHESANDTHEREFOREINCREASESTHESWIRLINTENSITYBECAUSEOFTHISSTRONGSECONDARYMOTIONTHEREARESTRONGLOSSESATTHEINLETOFTHEBRANCH,WHICHREDUCESTHEHEADOFTHETURBINEANDTHEREFORECAUSESTHEREDUCTIONOFPOWEROUTPUTDURINGTHEPROJECTITWASTRIEDTOOBTAINTHEUNSTEADYBEHAVIORBYAKSIMULATIONONRELATIVELYCOARSEGRIDS200300000NODESHOWEVER,THESECALCULATIONSDIDNOTSHOWTHEVORTEXINSTABILITYMERELYAVORTEXFORMSWHICHEXTENDSFROMONESIDEBRANCHTOTHEOTHERTHESWIRLINTENSITYWASUNDERPREDICTEDBYMORETHANAFACTORFIVEBECAUSEOFTHELOWSWIRLRATETHEVORTEXISCOMPLETELYSTABLEANDHASNOTENDENCYOFSKIPPINGBETWEENDIFFERENTSTATIONSEVENBYADYNAMICALEXCITATIONCAUSEDBYCHANGESOFTHEOUTLETBOUNDARYCONDITIONOFONEBRANCHTHEPREDICTEDVORTEXDIDNOTCHANGEITSPOSITIONONLYWHENAPPLYINGFINERGRIDSANDANOTHERTURBULENCEMODELTHEPREDICTEDSWIRLINTENSITYCOULDBEINCREASEDHEREANALGEBRAICTURBULENCEMODELWITHALIMITATIONOFTHEEDDYVISCOSITYISAPPLIEDTHEUSEDGRIDSCONSISTSOFABOUT500000NODESASACONSEQUENCETHISLEADSTOANINSTABILITYOFTHEVORTEXINTHEPREDICTIONTHEVORTEXSKIPSBETWEENTHETWOSTRUCTURESSHOWNINFIG14ONEOFTHESESTRUCTURESCORRESPONDSQUITEWELLWITHTHESTRUCTUREOBSERVEDINTHEMODELTESTSINTHESECONDSITUATIONTHEVORTEXEXPENDSFROMONESIDEBRANCHTOTHEOTHERTHISCOMPLIESWITHTHEABOVEMENTIONEDSTABLERESULTSTHECALCULATEDSWIRLINTENSITYISSTILLMORETHANTWOTIMESLOWERCOMPAREDTOTHERESULTSOFTHEMODELTESTSTHEREFOREFURTHERINVESTIGAFIG12GEOMETRYOFTHETRIFURCATIONFIG13VORTEXSTRUCTURETIONSWITHOTHERTURBULENCEMODELSANDWITHFINERGRIDSARENECESSARYANDWILLBECARRIEDOUTINFUTUREFIG14PREDICTEDVORTEXSTRUCTURESFORCOMPLETENESSTHESOLUTIONTOTHEPROBLEMISSHOWNITCONSISTSOFTHEINSTALLATIONOFTWOPLATESINTHEUPPERANDLOWERPARTOFTHESPHERETHISISSHOWNINFIG15HENCENOFREESPACEISAVAILABLE,WHERETHEVORTEXCANFORMCONSEQUENTLYTHEINTENSITYOFTHEVORTEXISDRAMATICALLYREDUCEDANDTHEVORTEXISCOMPLETELYSTABLEINTHEMEANTIMETHERECONSTRUCTIONWASCARRIEDOUTANDTHEFLUCTUATIONOFTHEPOWEROUTPUTVANISHEDASABYPRODUCTTHELOSSESINTHETRIFURCATIONARESEVERELYREDUCED,WHICHRESULTSINANINCREASEOFPOWEROUTPUTOFAPPROXIMATELY5FURTHERDETAILSOFTHISPROBLEMCANBEFOUNDIN9,10DISCUSSIONASALREADYMENTIONEDTHECALCULATIONSUSINGTHEKMODELWERENOTSUCCESSFULITISWELLKNOWNTHATTHISMODELISNOTABLETOPREDICTHIGHLYSWIRLINGFLOWSACCURATELYTHEUNSTEADYMOTIONOFTHEVORTICESESPECIALLYOFVERYSLIMVORTICES,HOWEVER,VERYMUCHDEPENDSONTHESWIRLINTENSITYINORDERTOPRESCRIBESUCHTYPESOFFLOWWITHSUFFICIENTACCURACYITISNECESSARYTOHAVEHIGHLYSOPHISTICATEDTURBULENCEMODELSANDVERYFINEGRIDS,MAYBETHEONLYWAYTOACHIEVEITISTHEAPPLICATIONOFLARGEEDDYSIMULATIONROTORSTATORINTERACTIONINANAXIALTUBINETHEFOLLOWINGEXAMPLEBELONGSTOTHESECONDGROUP,THEUNSTEADINESSISFORCEDBYMOVINGGEOMETRIESTHEPROBLEMINQUESTIONISTHEFIG15MODIFIEDGEOMETRYFIG16GEOMETRYOFTHEINVESTIGATEDAXIALTURBINEFLOWINANAXIALTURBINETHESPECIALITYOFTHISTURBINEISITSRELATIVELYLOWSPECIFICSPEEDITHASBEENDESIGNEDFORPRESSURERECUPERATIONINPIPINGSYSTEMSTHEADVANTAGEISTHATTHEDISCHARGEISNEARLYINDEPENDENTOFTHESPEED,BECAUSEOFTHATTHETURBINECANNOTINTRODUCEWATERHAMMERSINTHESYSTEMTHEGEOMETRYOFTHETURBINEISSHOWNINFIG16ITCONSISTSOFTHEINLETCONFUSER,12FIXEDGUIDEVANES,15RUNNERBLADESANDTHEDRAFTTUBETHESTATORANDROTORPARTISSHOWNINMOREDETAILINFIG17FORTHESIMULATIONTHECOMPLETETURBINEISCONSIDEREDINCLUDINGALLFLOWCHANNELSINTHEGUIDEVANESANDINTHERUNNER,ALTHOUGHASYMMETRYCONDITIONOF120COULDBEUSEDTHEREASONIS,THATALSOAVARIANTWITHUNSYMMETRICALOUTLETHASBEENINVESTIGATEDTHECOMPUTATIONALMESHCONSISTSOFMORETHAN2MILLIONGRIDNODES,PARTOFTHEGRIDISSHOWNINFIG18THESEAREROUGHLY60000NODESPERFLOWCHANNELITISARATHERCOARSEGRID,CONSIDERINGTHATTHECLEARANCEBETWEENRUNNERBLADESANDCASINGHASTOBEINCLUDEDINTHEMODEL,WHICHISNECESSARYSINCETHECLEARANCEFLOWVERYMUCHAFFECTSTHECHANNELFLOWBECAUSEOFTHESHORTRUNNERBLADESTHECALCULATIONSARECARRIEDOUTUSINGTHESTANDARDKMODELINTHEFOLLOWINGSOMERESULTSOFTHECALCULATIONWILLBESHOWNINFIG19THEINSTANTANEOUSFLOWINTHERUNNERISPRESENTEDTHEFIGURESHOWSTHEPRESSUREDISTRIBUTIONOFTHERUNNERSURFACEASWELLASSTREAMLINESSTARTEDATDIFFERENTLOCATIONSLOOKINGATTHEPRESSUREONECLEARLYSEESTHESTAGNATIONPOINTATTHELEADINGEDGETHELOCATIONOFTHEDRAFTTUBEGUIDEVANESRUNNERFIG18PARTOFTHECOMPUTATIONALMESHFIG17GEOMETRYOFROTORANDSTATORFIG19INSTANTANEOUSFLOWINTHERUNNERSTAGNATIONPOINTVARIESSLIGHTLYWITHTHERUNNERPOSITIONGENERALLYTHEINLETFLOWANGLESEEMSTOBESLIGHTLYTOOFLATTHEREFORETHESTAGNATIONPOINTISSHIFTEDTOWARDSTHESUCTIONSIDECONSIDERINGTHEFLOWINTHETIPCLEARANCEONECANOBSERVETHATATTHEINLETTHESHEARFORCESDOMINATETHEFLOWTENDSTOGOFROMTHESUCTIONTOTHEPRESSURESIDEINTHESECONDHALFOFTHEBLADETHEPRESSUREFORCESDOMINATETHEFLOWINTHECLEARANCEGOESFROMTHEPRESSURETOTHESUCTIONSIDEITCANALREADYBESEENBYTHISRESULTSTHATTHEDESIGNOFTHERUNNERISNOTOPTIMALTHISISAFIRSTVERSION,INTHEMEANTIMEAMUCHBETTERRUNNERHASBEENDESIGNEDHOWEVERTHISGEOMETRYISNUMERICALLYINVESTIGATEDSINCEEXTENSIVEMEASUREMENTSHAVEBEENCARRIEDOUTFORTHISCONFIGURATIONANDTHENUMERICALRESULTSCANBEVALIDATEDINFIG20AGAINTHEINSTANTANEOUSPRESSUREFORACERTAINTIMESTEPISSHOWNONECANOBSERVETHELOWPRESSUREREGIONONTHESUCTIONSIDEATTHETOPOFTHERUNNERBLADESCLEARLYVISIBLEISTHEVARIATIONOFTHEPRESSUREWITHTHEPOSITIONTHELOWPRESSUREREGIONCORRESPONDSQUITEWELLWITHTHECAVITATIONOBSERVATIONATTHETESTRIG,SEEFIG21THEREONEALSOCANOBSERVETHEVARIATIONOFTHECAVITATIONBUBBLESACCORDINGTOTHERUNNERPOSITIONASAQUANTITATIVECOMPARISONTHEPRESSUREATTWOLOCATIONSISSHOWNINFIG22POSITION1ISLOCATEDINFRONTOFTHEGUIDEVANESANDTHESECONDPOSITIONLIESBETWEENTHEGUIDEVANESANDTHERUNNERATBOTHLOCATIONSTHEMEASUREDANDTHECALCULATEDPRESSURECORRESPONDSQUITEWELLONECANSEETHATEVENINFRONTOFTHEGUIDEVANESPRESSUREFLUCTUATIONSCANBEOBSERVEDBETWEENTHESTATORFIG20CALCULATEDPRESSUREDISTRIBUTIONFORACERTAINRUNNERPOSITIONFIG21CAVITATIONOBSERVATIONINTHERUNNERFIG22PRESSUREDISTRIBUTIONATTWOSPOTPOINTSANDTHEROTORFLUCTUATIONSOFNEARLY25OFTHEHEADOFTHETURBINECANBESEENTHIS,OFCOURSE,LEADSTODYNAMICALFORCESONTHEBLADESINFIG23THETORQUEONONERUNNERBLADEASWELLASTHETORQUEOFTHECOMPLETERUNNERISSHOWNTHECALCULATEDTORQUEFLUCTUATIONONASINGLEBLADEARENEARLY30OFTHEAVERAGEDTORQUETHISISADYNAMICALFORCEONTHEBLADINGTHETOTALTORQUE,HOWEVER,ISNEARLYCONSTANTDUETOTHEGREATNUMBEROFBLADESANDDUETODIFFERENTPHASESOFTHEFLUCTUATIO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年住院医师规培-新疆-新疆住院医师规培(眼科)历年参考题库含答案解析(5套)
- 2025年住院医师规培-新疆-新疆住院医师规培(医学检验科)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-重庆-重庆计算机文字录入处理员五级(初级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-重庆-重庆广播电视天线工一级(高级技师)历年参考题库典型考点含答案解析
- 培训与知识学习
- 中医科面试真题及答案详解
- 气体充装行业安全知识培训课件
- 全国农产品质量安全考试题库及答案
- 钢结构工程质量控制方案
- 2025年中国邮政集团有限公司河南省分公司社会招聘笔试历年参考题库及答案
- 2025年3到6岁幼儿发展指南考试试题及答案
- 2025年光伏施工安全试题及答案
- 翻越您的浪浪山新学期开学第一课+课件
- 宏图煤矿防突设计2025.9.8
- 贵州航空产业城集团股份有限公司,贵州安立航空材料有限公司招聘笔试题库2025
- 奇瑞购销协议书范本
- 社区模拟试题和答案
- 银行测试管理办法
- 2025年技师(二级)养老护理员职业技能鉴定《理论知识》真题卷(后附答案和解析)
- 境外常驻人员管理办法
- 2025至2030中国城市地下管线探测行业发展状况与投资策略分析报告
评论
0/150
提交评论