




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CHINESEJOURNALOFMECHANICALENGINEERINGVol.22,aNo.4,a2009594DOI:10.3901/CJME.2009.04.594,;ReliabilitySimulationandDesignOptimizationforMechanicalMaintenanceLIUDeshun*,HUANGLiangpei,YUEWenhui,andXUXiaoyanHunanProvincialKeyLaboratoryofHealthMaintenanceforMechanicalEquipmentHunanUniversityofScienceandTechnology,Xiangtan411201,ChinaReceivedSeptember8,2008;revisedApril16,2009;acceptedApril30,2009;publishedelectronicallyMay5,2009Abstract:Reliabilitymodelofamechanicalproductsystemwillbenewlyreconstructedandmaintenancecostwillincreasebecausefailedpartscanbereplacedwithnewcomponentsduringservice,whichshouldbeaccountedforinsystemdesign.Inthispaper,areliabilitymodelandreliability-baseddesignoptimizationmethodologyformaintenancearepresented.First,basedonthetime-to-failuredensityfunctionofthepartofthesystem,theagedistributionsofallpartsofthesystemduringserviceareinvestigated,areliabilitymodelofthemechanicalsystemformaintenanceisdeveloped.Then,reliabilitysimulationsofthesystemswithWeibullprobabilitydensityfunctionsareperformed,thesystemminimumreliabilityandsteadyreliabilityformaintenancearedefinedbasedonreliabilitysimulationduringthelifecycleofthesystem.Thirdly,amaintenancecostmodelisdevelopedbasedonreplacementratesoftheparts,areliability-baseddesignoptimizationmodelformaintenanceispresented,inwhichtotallifecyclecostisconsideredasdesignobjectiveandsystemreliabilityasdesignconstrain.Finally,thereliability-baseddesignoptimizationmethodologyformaintenanceisusedtodesignofalinkringforthechainconveyor,whichshowsthatoptimaldesignwiththelowestmaintenancecostcanbeobtained,andminimumreliabilityandsteadyreliabilityofthesystemcansatisfyrequirementofsystemreliabilityduringserviceofthechainconveyor.Keywords:maintenance,reliability,simulation,designoptimization1IntroductionDuringthelifecycleofamechanicalproduct,maintenance,whichisimplementedonthejudgmentofpracticalstates,preservationandreconstructionofsomecertainstatesfortheproduct,isveryimportanttokeeptheproductavailableandprolongitslife.Studiesonmaintenanceformechanicalproductsareroughlyclassifiedintothefollowingthreecatalogs.(1)Howtoformulatemaintenancepolicyor(and)howtooptimizemaintenanceperiodsconsideringsystemreliabilityandmaintenancecost,e.g.,whensystemreliabilityissubjectedtosomecertainconditions,maintenancepolicyandoptimalmaintenanceintervalaredeterminedtomakemaintenancecostlowest14.(2)Todevelopmaintenancemethodsandtoolstoensuresystemmaintenancetobothlowcostandshortrepairtime,suchasspecialmaintenancetoolboxesdeveloped59.(3)Todesignformaintenance(DFM),namelyduringdesignprocedure,systemmaintainabilityisevaluatedand*Correspondingauthor.E-mail:ThisprojectissupportedbyNationalBasicResearchProgramofChina(973Program,GrantNo.2003CB317001),ScientificResearchFundofHunanProvincialEducationDepartmentofChina(GrantNo.07A018),HunanProvincialNaturalScienceFoundationofChina(GrantNo.07JJ5074),andNationalNaturalScienceFoundationofChina(GrantNo.50875082)isimproved1014.Maintenancestartsatdesign.Obviously,designmethodologyformaintenance,whichisoneofbesteffectivemaintenancemeansinthelife-cycleofaproduct,attractsmanyresearchersinterests.However,researchondesignformaintenanceismainlycentralizedontwofields.Oneismaintainabilityevaluationonproductdesignalternatives,theotherissomepeculiarstructuresofpartsdesignedforconvenientmaintenance.Forexample,computer-aidedmaintainabilityevaluationtoolsforproductdesign11,productassemblyanddisassemblysimulationprogramsformaintenance12,airplanedesignformaintenance13,andsoon.Butstudiesondesignmethodologiesconsideringproductreliability,maintenancecostandmaintenancepolicyareseldomreported.SHUandFLOWERoncepointedoutthatreckoninginlaborcostandproductionintervalcost,designdecisionofalternativesofthepartwouldbeinfluenced.However,subsequentresearchreportshavenotbeenpresented15.Inthispaper,basedonthetime-to-failuredensityfunctionofthepart,distributionsofserviceageofpartsforamechanicalsystemthatundergoesmaintenanceareinvestigated.Thenthereliabilitymodelofthemechanicalsystemisreconstructedandsimulated.Finally,anoveldesignoptimizationmethodologyformaintenanceisdevelopedandillustratedbymeansofdesignofalinkringforthechainconveyor.CHINESEJOURNALOFMECHANICALENGINEERING5952ReconstructionofReliabilityModelofMechanicalSystemforMaintenance2.1ModelassumptionsAfteramechanicalsystemrunssometime,duetoreplacementoffailparts,primaryreliabilitymodelisinapplicabletochangedsystem,thusthereliabilitymodelshouldbereconstructed.Themechanicalsystemdiscussedinthispaperhasfollowingcharacteristics.(1)Systemconsistsofalargenumberofsametypeparts,inwhichthenumberofpartsisconstantduringthewholelifecycleofthesystem.(2)Thetime-to-failuredensitydistributionfunctionsofallpartsarethesame,also,replacementpartshavethesamefailuredistributionfunctionsastheoriginalparts(3)Failureofeachpartisarandomindependentevent,i.e.,failureofonepartdoesnotaffectfailureofotherpartsinthesystem.Forexample,achainconveyorwidelyusedinmanyindustriesconsistsofalargenumberofsameroundrings,samelinksheetsandsamescrapeboards.Theirrespectivenumbersareconstantafterthechainconveyorisputintotheservice.Also,eachpart,beingsubjectedtosimilarworkconditionsandsimilarfailurestates,hasthesameoridenticaldensitydistributionoftimetofailure.Moreover,replacementpartshavefailuretimedensityfunctionsameoridenticaltotheoriginalpartsduringtheserviceofthechainconveyor.2.2ReliabilitymodelingformaintenanceReliabilityofamechanicalsystemdependsonitsparts,yetreliabilityandfailureprobabilityofwhichrestontheirserviceages.Herein,accordingtothedensitydistributionfunctionoftimetofailureofthepart,partserviceagedistributionofthemechanicalsystemiscalculated,thenreliabilitymodelofthemechanicalsystemformaintenanceisdeveloped.Duringtheserviceofamechanicalsystem,somepartsthatfailrequiretobereplacedintime,henceagedistributionofpartsofthemechanicalsystemundergoingmaintenancehasbeenchanged.Supposedthatafterthemechanicalsystemrunssometimentn=,whereistimebetweenmaintenanceactivities,i.e.,maintenanceinterval,theunitofcanbehours,days,months,oryears.If()inptrepresentsageproportionofpartsatntwithagei,thusagedistributionofpartsattimentdenotesmatrix01(),(),nnptpt(),inpt()nnpt.Thefailuredensityfunctionofpartsandcurrentagedistributionofpartsinthesystemdetermineagedistributionatnexttime,ortheportionofthecontentsofeachbinthatsurvivetothenexttimestep.Anagedistributionobtainedateachtimestepforeachpartpopulationdeterminesfailurerateforthefollowingtimestep.Tofindfailureprobabilityofpartsthefailuredensityfunctionisintegratedfromzerotont.Theportionofthepopulationthatsurvivesadvancestothenextagebox,andtheportionthatfailisreplacedbynewpartstobecomezeroagetoreenterthefirstbox.Initially,allpartsarenewandzeroageinthefirstbox.Thatis,at00t=,theportioninthefirstboxis00()1pt=.(1)At1t=,agefractionsofthefirstboxandthesecondboxarerepresentedas1100001000()()1()d,()()()d.ptptfxxptptfxx=(2)Portionsofbothageboxessurviveandadvancetothenextagebox,andportionsoffailedpartsfrombothboxesreplacedbynewpartsappearinthefirstbox.At22t=,theproportionsofthefirstthreeboxesarecalculatedasfollows:22211012010202110100()()1()d,()()1()d,()()()d()()d,ptptfxxptptfxxptptfxxptfxx=+#(3)So,atntn=,portionsofpartsineachboxarecalculatedbyusingthefollowingequations:110(1)1210(2)23103321022110()()1()d,()()1()d,()()1()d,()()1()d,()()1()d,nnnnnnnnnnnnnnnnnnnptptfxxptptfxxptptfxxptptfxxptptfxxp=#10101(1)0100()()1()d,()()()d.nnnininitptfxxptptfxx+=(4)Where0()nptisthefractionofpopulationofpartswithage0atnt,representingpartsthathavejustbeenputintoservice.Itmeansthat0()nptisfailurerateofparts,orreplacementrateoffailedparts.Inotherword,thefractionsofpartsinthefirstboxat01,ntttarenewpartsthatreplacethesefailedparts.AseriessystemconsistsofNpartsthathavethesamefailuredensitydistribution,eachpartisjustaseriesunit,andeachunitisrelativelyindependent.InseriessystemtheYLIUDeshun,etal:ReliabilitySimulationandDesignOptimizationforMechanicalMaintenanceY596failureofanyoneunitresultsinsystemfailure,inaccordingtotheprincipleofprobabilitymultiplication,thereliabilityofseriessystemsbecomes()00()1()d.inptNniniRtfxx=(5)Sincethenumberofpartsthatcomprisethesystemisconstant,here,thesystemreliabilityofthemechanicalsystemformaintenanceisdefinedas()00()()1()dinNnnptNniNiRtRtfxx=()001()d.inptniifxx=(6)Fromabovetosee,aslongasthetime-to-failuredensityfunctionandmaintenanceintervalaregiven,serviceagedistributionsofpartsandsystemreliabilitycouldbeobtainedbysimulation.3ReplacementRateandReliabilitySimulationforMaintenance3.1WeibulldistributionoftimetofailureTheWeibullprobabilitydensityfunctioniswidelyusedinfailuremodelinginmechanicalpartsandelectroniccomponents.HeretheWeibulldistributionwithtwoparametersisusedtosimulatereliabilityofthesystemthatisundergoingmaintenance,thatis,thetime-to-failuredensityfunctionofsystemsconstitutedpartsis1()exp,0xxfxx=.(7)InEq.(7),istheshapeparameter,isthescaleparameter.xistime,whoseunitecanbehours,days,oryears.FivefailuredensityfunctionswiththeirWeibullparameters10,1,2,3,4,5=aredescribedinFig.1.Itisshownthatislarge,beforeserviceageofpartsarrivesattheexpectedvalue,failureprobabilityofpartsisextremelylow.Whereas,issmall,manypartsfailsinshorttimeofservice.3.2ReliabilitysimulationDifferentmaintenanceintervalofthemechanicalsystemanddifferenttime-to-failuredensityfunctionofitspartsareselectedtosimulatereliabilityofthesystemshownasFig.2Fig.4.Fig.2showshowsimulationtimestep(maintenanceinterval)affectssystemreliability,theplotsshowncorrespondtomaintenanceinterval0.5,1,2=,andwithWeibulldistributionparameters4,10=.Fig.3plotstheinfluenceofthescaleparameterofWeibulldistributiononsystemreliability,andfourcurvesrepresentfourdifferenttypepartscorrespondingtoaconstantvalueofequalto4pairedwithvalueof8,10,12,15respectively.Fig.4revealshowtheshapeparameterofWeibulldistributionaffectssystemreliability,andWeibulldistributionparametersoffivecurvesare10,=1,2,3,4,5=.Correspondingly,theirreplacementratecurvesofsystemspartsforthesetime-to-failuredensitydistributionfunctionsareplottedinFig.5.Additionally,inFig.3Fig.5,maintenanceintervalis1=.Fig.1.WeibullprobabilitydistributionsFig.2.SystemreliabilityR(t)withFig.3.SystemreliabilityR(t)withSeveralcharacteristicsofthesefiguresareofinterest.First,thereliabilityandreplacementrateeventuallyreachessteadystate.ThisagreeswithDrenicksTheorem,whichCHINESEJOURNALOFMECHANICALENGINEERING597statesthesuperpositionofaninfinitenumberofindependentFig.4.SystemreliabilityR(t)withFig.5.Partreplacementratep0(t)equilibriumrenewalprocessishomogeneousPoissonprocess.Duringtheinitialstageofsystemservice,partsofthesystemare“new”,then,become“old”.Theportionofpartsthatfailgraduallyincreases,thusthepartreplacementrateincreasesandsystemreliabilitywilldropmonotonically.Withthereplacementofasignificantportionofthepopulation,portionofpartsthatfailwilldecrease,thusthepartreplacementratewilldropandthesystemreliabilitywillriseuntilthisoscillationisoverandnextoscillationbegins.Aftersomeoscillations,thepopulationbecomesmoreage-diversifiedwitheachoscillation,andtheagedistributionapproachessteady.Atthattime,theoscillationsinreplacementrateandsystemreliabilitydiminish.ComparedFig.4withFig.5,itisshownthatthetrendofreplacementrateiscontrarytothechangeofsystemreliability.Whensystemreliabilityincreases,partreplacementratereduces.Otherwise,assystemreliabilityreduces,partreplacementrateincreases.Secondly,thesteadystatevalueandthedegreeofoscillationofthesystemreliabilitydependonmaintenanceinterval.AsFig.2shows,thereliabilityrisesasmaintenanceintervaldecreasessincepartsthatfailarebeingreplacedmorequickly.Theshorterthemaintenanceintervalis,thehigherreliabilityis,andthesmalleroscillationsare.However,frequentrepairswillresultinhighermaintenancecost.Thirdly,thesteadystatevalueofthesystemreliabilitydependsontheparametersofWeibulldistribution.Thedependenceonisnotsurprising,highervaluesofforagivensetofyieldhighervaluesforexpecttimetofailureandthuslowerreplacementrateandhigherreliability.Moreinterestingly,withtheincreaseofthevalueof,thesteadyvaluesofreplacementratedecreaseandthesteadyvaluesofreliabilityincrease.Fourth,thedegreeofoscillationofsystemreliabilitydependsontheparametersofWeibulldistribution.Althoughtheinfluenceofonoscillationscanbeneglected,theinfluenceofonoscillationsshouldbepaidspecialattentionto.Biggervalueofdenotesthatfailurerateofpartsislowerbeforeserv
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 草原草场租赁与草原生态环境治理合同
- 厂房消防安全与应急处理合作协议
- 文化创意园区场地租赁与文化项目合作合同
- 餐饮连锁品牌区域独家代理合同范本模板
- 普外科出科护理规范与实施
- 产后中药熏蒸治疗技术应用与护理
- 宝宝腹股沟臀部护理
- 液氮治疗的原理及注意事项
- 2025年汽车买卖协议书
- 团队管理能力提升计划
- 《死亡诗社》电影赏析
- 七年级信息技术教案下册(合集6篇)
- 2025年成人高考成考(高起专)英语试题与参考答案
- 延保服务合同模板
- 非遗文化走进数字展厅+大数据与互联网系创业计划书
- 【电商平台“二选一”行为的反垄断法律规制探究20000字(论文)】
- 广东省广州市天河区2023-2024学年学年高一下学期期末考试数学试卷(解析版)
- 上海市2023-2024学年八年级下学期期末数学练习卷(原卷版)
- DL∕T 2024-2019 大型调相机型式试验导则
- 人教版小学数学一年级下册第1-4单元教材分析
- 危险化学品仓库安全检查表
评论
0/150
提交评论