




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
外文部分Chapter2Planewaves2.1IntroductionInthischapterwepresentthefoundationsofFourieracoustics-planewaveexpansions.Thismaterialispresentedindepthtoprovideafirmfoundationfortherestofthebook,introducingconceptslikewavenumberspaceandtheextrapolationofwavefieldsfromonesurfacetoanother.Fouriesacousticsisusedtoderivesomefamoustoolsfortheradiationfromplanarsources;theRayleighintegrals,theEwaldsphereconstructionoffarfieldradiation,thefirstproducttheoremforarrays,vibratingplateradiation,andradiationclassificationtheory.Finally,anewtoolcalledsupersonicintensityisintroducedwhichisusefulinlocatingacousticsourcesonvibratingstructures.Webeginthechapterwithareviewofsomefundamentals;thewaveequation,Eulersequation,andtheconceptofacousticintensity.2.2TheWaveEquationandEulersEquationLetp(x,y,z,t)beaninfinitesimalvariationofacousticpressurefromitsequilibriumvaluewhichsatisfiestheacousticwaveequation222210ppct(2.1)forahomogeneousfluidwithnoviscosity.cisaconstantandreferstothespeedofsoundinthemedium.At020Cc=343m/sinairandc=1481m/sinwater.TherighthandsideofEq.(2.1)indicatesthattherearenosourcesinthevolumeinwhichtheequationisvalid.InCartesiancoordinates2222222xyzAsecondequationwhichwillbeusedthroughoutthisbookiscalledEulersequation,0vpt(2.2)Wherev(Greekletterupsilon)representsthevelocityvectorwithcomponentsu,v,w;vuivjwk(2.3)whereijandkaretheunitvectorsinthethex,y,andzdirections,respectively,andthegradientintermsoftheunitvectorsasijkxyz(2.4)WeusetheconventionofadotoveradisplacementsquantitytoindicatevelocityasisdoneinJungerandFeit.Thedisplacementsinthethreecoordinatedirectionsaregivenbyu,v,andw.ThederivationofEq.(2.2)isusefulindevelopingsomeunderstandingofthephysicalmeaningofpandv.Letusproceedinthisdirection.Figure2.1:InfinitesimalvolumeelementtoillustrateEulersequationFigure2.1showsaninfinitesimalvolumeelementoffluidxyz,withthexaxisasshown.Allsixfacesexperienceforcesduetothepressurepinthefluid.Itisimportanttorealizethatpressureisascalarquantity.Thereisnodirectionassociatedwithit.Ithasunitsofforceperunitarea,2/NmorPascals.Thefollowingistheconventionforpressure,P0CompressionP0RarefactionAtaspecificpointinafluid.apositivepressureindicatesthataninfinitesimalvolumesurroundingthepointisundercompression,andforcesareexertedoutwardfromthisvolume.ItfollowsthatifthepressureattheleftfaceofthecubeinFig.2.1ispositive,thenaforcewillbeexertedinthepositivexdirectionofmagnitudep(x,y,z)yz.Thepressureattheoppositefacep(x+x,y,z)isexertedinthenegativexdirection.Weexpandp(x+x,y,z)inaTaylorseriestofirstorder,asshowninthefigure.Notethattheforcearrowsindicatethedirectionofforceforpositivepressure.Giventhedirectionsofforceshown,thetotalforceexertedonthevolumeinthexdirectionis(,)(,)ppxyzpxxyzyzxyzxNowweinvokeNewtonsequation,f=ma=mut,wherefistheforce,0mxyzand0isthefluiddensity,yielding0uptxCarryingoutthesameanalysisintheyandzdirectionsyieldsthefollowingtwoequations:0uptyand0uptzWecombinetheabovethreeequationsintooneusingvectorsyieldingEq(2.2)above,EulersEquation.2.3InstantaneousAcousticIntensityItiscriticalinthestudyofacousticstounderstandcertainenergyrelationships.Mostimportantistheacousticintensityvector.Inthetimedomainitiscalledtheinstantaneousacousticandisdefinedas()()()Itptvt,(2.5)withunitsofenergyperunittime(power)perunitarea,measuredas(joules/s)/2morwatts/2m.Theacousticintensityisrelatedtotheenergydensityethroughitsdivergence,eIt,(2.6)wherethedivergenceisyxzIIIIxyz(2.7)Theenergydensityisgivenby2211022|()|()evtpt(2.8)whereisthefluidcompressibility,201c(2.9)Equation(2.6)expressesthefactthatanincreaseintheenergydensityatsomepointinthefluidisindicatedbyanegativedivergenceoftheacousticintensityvector;theintensityvectorsarepointingintotheregionofincreaseinenergydensity.Figure2.2shouldmakethisclear.IfwereversethearrowsinFig.2.2,apositivedivergenceresultsandtheenergydensityatthecentermustdecrease,thatis,et0.Thiscaserepresentsanapparentsourceofenergyatthecenter.Figure2.2:Illustrationofnegativedivergenceofacousticintensity.Theregionatthecenterhasanincreasingenergydensitywithtime,thatis,anapparentsinkofenergy.2.4SteadyStateToconsiderphenomenainthefrequencydomain,weobtainthesteadythesteadystatesolutionthroughtransforms()1()2iwtptpwedw(2.10)leadingtothesteadystatesolution()()iwtpwptedt(2.11)Equation(2.10)canbedifferentiatedwithrespecttotimetoyieldtheimportantrelationship()1()2iw
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道火灾应急疏散预案(3篇)
- 行政法学的思想史与理论发展试题及答案
- 课后班火灾应急预案范文(3篇)
- 通过对话增进理解与信任的高考作文试题及答案
- 软件设计师考试高效复习试题及答案
- 法学概论的社会影响力研究试题及答案
- 风险管理的未来发展试题及答案
- 量子计算基础知识考察试题及答案
- 行政法学重点知识试题及答案说明
- 经济增长与社会福祉的平衡探讨试题及答案
- 精简小型风力发电系统
- EOP II沟通交流环节药学专业主要考虑-新药3期临床试验前药学沟通交流技术要求及案例分析
- DB43T 2558-2023 城镇低效用地识别技术指南
- 《PLC技术及应用》期末试卷-B卷及答案
- 2024年时事政治考点大全(173条)
- 展厅布展施工合同模板
- 3.5 鼓乐铿锵 课件高中音乐人音版(2019) 必修 音乐鉴赏
- 成人中心静脉导管(CVC)堵塞风险评估及预防-2024团体标准
- 《声声慢(寻寻觅觅)》课件
- 2024年高中自主招生考试化学检测试题
- HG∕T 3792-2014 交联型氟树脂涂料
评论
0/150
提交评论