




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ofg,isprocess.ultrasonictheultrasonicKeywords:Ultrasonicmachining;Turning;Finiteelementmodelling;Microstructuretheexistent,conventionalturning(CT)technology.frequencyultrasonicvibration,superimposedontheconventionalmovementofthecuttingtool(Fig.1),hasprovedtobeeectiveinmachiningintractablemetalalloysaswellasbrittlematerials,suchasceramicsandcuttingforces7,8.trolsystem.Thissystemstabilisestheturningprocesswithultrasonicvibrationandmakesthisprocesshighlycontrollable.Thedetaileddescriptionofthisnovelcontrolsystemisgivenin9,10.TheexperimentalpartofthispaperstudiesUATwithautoresonantcontrolincomparisontoconventionalturning.AnotherimportantissueconcerningUATisthe*Correspondingauthor.Tel.:+44-1509-227504;fax:+44-1509-Conventionalmachiningofmodernnickel-andtita-nium-basedsuperalloys,usedinaerospaceapplications,causeshightooltemperaturesandsubsequentfastwearofcuttingedgesevenatrelativelylowcuttingspeeds.Agrowingdemandformachiningtheseintractablematerialsrequiresnewadvancedturningtechnologies.Suchatechnologywasintroducedin1960s:high-Nevertheless,uptothepresentdayUAThasnotbeenwidelyintroducedintoindustrialenvironment.ThemainreasonforitissensitivityoftheUATprocesstotheloadappliedtothecuttingtip,resultinginthelossofcuttingeciencywhentheloadchangesoradierenttipisused.However,thislimitationhasrecentlybeeneliminatedwiththeinventionoftheautoresonantcon-1.IntroductionTurningisamachiningprocess,whereathinsurfacelayerofthetreatedmaterialisremovedfromawork-piecebyasharpwedge-shapedcuttingtoolformingacylindricalsurface.Thistechnologyhasbeenusedforcenturiesmainlyforcuttingvarioustypesofmetallicmaterials.However,intherecentyears,arangeofnewalloysandcompositematerialshasbeendevelopedforvariousengineeringapplications.Manyofthesenewmaterialsbecomemuchmorediculttocutwithglass.Thistechnology,calledultrasonicallyassistedturning(UAT),demonstratesarangeofbenetsinmachininghardmetalalloys:adecreaseincuttingforcesofuptoseveraltimes14,improvementinsurfacenishbyupto50%comparedtoCT5andnoisereduction6.Asformachiningofbrittlematerials,ceramicsandglasspresentlyrequireprolongedandexpensivepost-processingtoobtainthesurfacequalityrequiredforopticalcomponents;UATallowsobtainingmirrorsurfacenishinmachiningthesematerialsaswellasconsiderablereductionintoolwearandaverageUltrasonicallyassistedturningandexperimentalV.I.Babitsky,A.V.Mitrofanov,WolfsonSchoolofMechanicalandManufacturingEngineerinAbstractUltrasonicallyassistedturningofmodernaviationmaterialsamplitudeaC2515lm)superimposedonthecuttingtoolmovement.nonlinearresonantmodeofvibrationthroughoutthecuttingworkpiecesmachinedconventionallyandwiththesuperimposedprocessandnanoindentationanalysesofthemicrostructureofmodelprovidesnumericalcomparisonbetweenconventionalandcuttingforcesandcontactconditionsattheworkpiece/toolinterface.C2112004ElsevierB.V.Allrightsreserved.Ultrasonics42(2004)227502.E-mailaddress:v.silberschmidtlboro.ac.uk(V.V.Silberschmidt).0041-624X/$-seefrontmatterC2112004ElsevierB.V.Allrightsreserved.doi:10.1016/j.ultras.2004.02.001aviationmaterials:simulationsstudyV.V.Silberschmidt*LoughboroughUniversity,LeicestershireLE113TU,UKconductedwithultrasonicvibration(frequencyfC2520kHz,AnautoresonantcontrolsystemisusedtomaintainthestableExperimentalcomparisonofroughnessandroundnessforvibration,resultsofhigh-speedlmingoftheturningmachinedmaterialarepresented.Thesuggestednite-elementturningofInconel718intermsofstress/strainstate,8186/locate/ultrasmechanicsofthisprocess.Thereareonlyafewsourcesoftheworkpiece(paralleltotheX-axis,Fig.1b),orinthefeeddirection,i.e.alongtheaxisoftheworkpiece(Z-axis,Fig.1b).Aself-sustainedresonantmodeofvibrationofthiscuttingsystemisimplementedviatheautoresonantcontrolsystem,whichisdescribedindetailin9,10.ArangeofturningtestshasbeenconductedtocomparetheusageofUATandCTformachiningavi-ationmaterials.Thedetaileddescriptionofthesetestscanbefoundin5.AmongthematerialsusedforthetestsisInconel718ahigh-gradeheat-resistantNi-basedsuperalloywidelyusedintheaerospaceindustry.Thismaterialisveryabrasiveandcausesthetoolbluntingandhighcuttingtemperatureswhenmachinedconven-tionally.Thesurfacequalityobtainedbyturningisoneofthecrucialfactorsinmetalcuttingandisextremelysensitivetoanychangesinthemachiningprocess.ThesurfacenishofspecimensiscomparedintermsofaverageroughnessmeasurementRaandmeasurementofroundness(thepeak-to-valleymeasure),usingtheTay-s42(2004)8186Fig.1.Experimentalsetupforultrasonicallyassistedturning(a),andaschemeofrelativemotionoftheworkpieceandcuttingtool82V.I.Babitskyetal./Ultrasonicattemptingtodescribetheprocessesintheworkpiece/cuttingtoolinteractionzoneandtheirinuenceonthestructureofthemachinedmaterial3,6,11.Theseworksstudymostlythedynamicsoftheultrasonicmachineunitandnottheresponseofthetreatedmaterialtothistechnology,whileaclearunderstandingofmechanicalprocessesinthematerialduringUATwouldcertainlyallowafurtherdevelopmentoftheUATtechnology.ThemainaimofthispaperistostudyexperimentallyandnumericallythematerialmechanicsoftheUATprocess.2.ExperimentalstudiesTheexperimentalsetupusedtostudyUATisshowninFig.1.Theworkpieceisclampedinthechuckoftheuniversallatheandrotateswithaconstantspeed.Highfrequencyelectricimpulses,fedtotheinputoftheultrasonictransducer,excitevibrationinpiezoceramicringsduetothepiezoelectriceect.Thevibrationamplitudeisintensiedintheconcentratorandtrans-mittedtothetoolholderatthethinendofthecon-centrator.Resultantvibrationofthecuttingtipxedinthetoolholderreaches15lm(i.e.30lmpeak-to-peak)atafrequencyofabout20kHz.ThevibrationcanbeappliedeitherinthedirectiontangentialtothesurfaceinorthogonalUATwithtangentialvibration(b).lorHobsonTalysurf4surfacemeasurementinstrument.Thefollowingcuttingparametersareusedtomachinetestedspecimens:depthofcutd0:8mm,feedrates0:05mm/rev,andcuttingspeedv17m/min.ThesameparametersareusedforbothUATandCT,withsuperimposedultrasonicvibrationinthefeeddirectionappliedforUAT.Fig.2ashowsrepresentativeaxialprolesofthemachinedsurfaceoftheInconel718.ItisobviousthatmagnitudesofRaarereducedbynearly50%forspeci-mensmachinedwithUAT.Furthermore,theregularityofthesurfaceproleisgreatlyimproved,asthesurfaceFig.2.SurfacequalityofInconel718specimensmachinedwithUATandCT:axialsurfaceproles(a),roundnessproles(b).Cuttingparameters:d0:8mm,s0:05mm/rev,v17m/min.direction.Apparently,thereasonfortheseimprovementsisthes42(2004)818683changeofthenatureofthecuttingprocess,whichistransformedintotheonewithmultiple-impacthigh-frequencyinteractionbetweenthecuttingtoolandchipduetoappliedultrasonicvibration.Thisleadstochangesinmaterialdeformationprocessesandfric-tionforces,andincreaseinthedynamicstinessofthelathe-tool-workpiecesystem6,11duetothevibrationfrequencylevelsconsiderablyexceedingitsnaturalfre-quency.Inadditiontomeasurementsofthesurfacequality,themicrostructureofthemachinedsurfacehasbeeninvestigated.Inconel718workpiecesaremachinedun-derthesamecuttingconditions(v3:6m/min,d0:1mm,s0:03mm/rev)withapplicationofultrasonicvibrationintangentialdirectionandwithoutit.Then,nanoindentationanalysesofthesurfacelayersareper-formedwiththeNanoTestPlatformmadebyMicroMaterialsLtd.Accordingtotheresultsofthesetests,thewidthofthehardenedsurfacelayer,whichresultsfromtheextensivedeformationandhightemperaturepro-cessesduringtheturningprocedures,fortheultrasoni-callymachinedspecimenishalfthesizethatoftheconventionallymachinedone(40and80lm,respec-tively).Furthermore,theaveragehardnessofthislayerforUAT(about15GPa)isahalfofthatforCTandconsiderablyclosertothehardnessoftheuntreatedmaterial(about7GPa).Thehardnessofthematerialnonlinearlyincreaseswithariseintheleveloftheresidualplasticstrains.Hence,nanoindentationtestsindicatelowerresidualstrainsinthesurfacelayerforworkpiecesmachinedwithUATandaconclusioncanbedrawnthattheUATprocedureisconsiderablymoredelicatetotheworkpiecematerial.3.NumericalanalysisofUATFiniteelement(FE)simulationsareamajortoolformodellingofmachiningprocesses.Ithasbeenusedformodellingofturningforsome30years.Theoverviewofthestateoftheartinmetalcuttingsimulationscanbefoundin13,14.However,uptotheauthorsknowledge,nomodelsforUAThavebeendevelopeduntilnow.Thetwo-dimensionalFEmodelofbothCTandUATde-becomessmootherintheaxialdirection.Aconsiderableimprovementisalsoobtainedforroundnessofma-chinedworkpieces(Fig.2b):apeak-to-valleyvalueofroundnessmeasures4.20lmforCT,whereasitattainsonly1.89lmforUAT.Hence,theroundnessisim-provedby40%whenultrasonicvibrationissuperim-poseduponthemovementofthecuttingtool.Itisworthnoticingthatsimilarresultshavebeenobtainedbyotherresearchers7,12utilisingvibrationinthetangentialV.I.Babitskyetal./UltrasonicscribedinthispaperisbasedonthecommercialFEcodeMSC.Marc15.Anorthogonalturningprocess,i.e.thecuttingprocesswherethetooledgeisnormaltobothcuttingandfeeddirections,withtangentialvibrationisconsidered.Fig.1bshowsaschemeofthemodelledrelativemotionoftheworkpieceandcuttingtool;therotationaxisofthecylindricalworkpieceisorthogonaltotheplaneofthegure.Theworkpiecemoveswithaconstantvelocity,whereasthetoolvibratesharmonicallyarounditsequilibriumpositionwithfrequencyf20kHzandamplitudea15lm,correspondingtothevaluesusedinexperimentalstudies.Otherparametersofsimulationsare:uncutchipthicknesst10:1mm(whichcorrespondstothedepthofcut),rakeangleofthetoolc10C176,cuttingspeedV9m/min.Suchparametersofvibrationandofthecuttingprocessprovideseparationofthecutterfromthechipwithineachcycleofultrasonicvibration.ThematerialconstantsforagedInconel718aretakenfrom16.Kinematicalboundaryconditionsfortheworkpieceareappliedtoitsleft,rightandbottomsides(Fig.1b),whereasitstopsurfaceisfree:VxjAHV;VxjFGV;VxjHGV;VyjHG0:Thermalboundaryconditionsincludeconvectiveheattransferfromtheworkpiece,chipandtoolfreesurfacestotheenvironment:C0koT=onhTC0T1,wherekistheconductivity,hisaconvectiveheattransfercoe-cient,T1istheambienttemperature.ThethermaluxpassingfromthechiptothecutteralongthecontactlengthLc(Fig.1b)isdescribedasfollows:qHTchipC0Ttool,whereHisacontactheattransfercoecient,TchipandTtoolarechipandtoolsurfacetemperatures,respectively.Themodeltakesintoconsiderationthefollowingfactors,importantformetalturningsimulationsandaectingstressandstraingeneration:(1)contactinter-actionandfrictionatthetool-chipinterface;(2)non-linearmaterialbehaviour,includingstrain-rateeects,namelythedependenceofthematerialsyieldstressonstrainrates;(3)thermomechanicalcoupling,er-connectionbetweenmechanicalandthermalpartsoftheproblem.AsfollowsfromFEsimulations,theUATprocessduringonecycleofvibrationcouldbedividedintofourmainstages.Duringtherststage(Fig.3a),thecutterapproachesthechip;inthesecondstage,thecuttingtoolcontactsthechipandstartspenetratingintothework-piececausingthechipseparation.Theattainmentofthemaximumpenetrationdepthischaracterizedbythehighestlevelofgeneratedstressesintheprocesszoneandmarkstheendofthesecondstage(Fig.3b).Thefollowingstageisunloading:thevelocitydirectionofthetoolchangesanditmovesbackwards,butremainsincontactwiththechipevenafterthemomentwhenthespeedofthetoolexceedsthecuttingspeed(duetotheelasticspring-backofthechip).Duringthisphase,framespersecondwiththeareaoftheimagecomprisingabout4mm2.Fig.4ademonstratesaframeoftheUATlmingshowinganinteractionbetweenthecuttingtipandworkpiece.ThedierencesbetweenCTandUATinchipseparationmanifestinsuchspecicfeaturesofthetheelasticstrainsintheprocesszonedecrease.Thelaststage,startingwiththefullseparationofthecuttingedgefromthechip,isthewithdrawalofthecutterfromthechip(Fig.3c).Theintermittentcharacterofthechip-cuttingtoolcontactdeterminesthemaindierencesinthestressdistributionforCTandUAT.ThestressstateduringCTisnearlyquasistatic,asshowninnumericalsimulations(Fig.3d),withthehighestequivalentstressesconcen-tratedinprimaryandsecondaryshearzones,i.e.zonesaroundlineBE(Fig.1b)andnexttotherakefaceEK.Conversely,thestressstateinUATisinherentlytran-sient:stressesreachmaximumlevels,similartothoseofFig.3.DistributionofequivalentstressesduringUATatdierentmomentsofasinglecycleofvibration:cutterapproachingthechip(a),cutterinfullcontactwiththechip(b),andcuttermovingawayfromthechip(c)andCT(d).84V.I.Babitskyetal./UltrasonicCT,duringthepenetrationpartofthecycleofultrasonicvibration(Fig.3b),whereasthestressmagnitudeissig-nicantlylowerduringtheotherstagesofthecycle(Fig.3aandc),whenthecuttermovesawayfromthechipornotincontactwithit.Hence,averagestressesgeneratedinthematerialand,consequently,theintegrallevelofinteractionforcesbetweenthecuttingtoolandwork-pieceareconsiderablysmallerforUAT.Thisexplainsareductioninaveragecuttingforces(byseveraltimes)reportedinmanyexperimentalstudies1,3,4.4.StudyofchipformationAchipformationprocessisoneofthemostimpor-tantcharacteristicsinmetalcutting
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风险管理能力建设试题及答案
- 战略调整中的组织文化变更试题及答案
- 法学概论核心资料与试题及答案
- 分析网络流量控制的方法试题及答案
- 高效掌握的VB考试试题及答案
- 北京朝阳八十中学2025届七下数学期末学业水平测试试题含解析
- 法学概论与新兴领域的交叉点及试题与答案
- 2025至2030年中国果磨机行业投资前景及策略咨询研究报告
- 2025至2030年中国单面不干胶行业投资前景及策略咨询研究报告
- 2025至2030年中国全身紧肤胶行业投资前景及策略咨询研究报告
- 24秋国家开放大学《教育心理学》终结性考核论文大作业参考答案
- DB35T 2032-2021 耕地质量监测与评价技术规程
- 《证券投资学》全套教学课件
- 2024年秋新北师大版七年级上册数学教学课件 第五章 一元一次方程 第4节 问题解决策略:直观分析
- DLT5196-2016 火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程
- DL∕ T 802.3-2007 电力电缆用导管技术条件 第3部分:氯化聚氯乙烯及硬聚氯乙烯塑料电缆导管
- 穿越时空的音乐鉴赏之旅智慧树知到期末考试答案章节答案2024年浙江中医药大学
- CJT 511-2017 铸铁检查井盖
- 活动执行实施合同范本
- 24春国开电大《机电一体化系统综合实训》实训报告
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
评论
0/150
提交评论