恒压供水控制系统的硬件设计1_第1页
恒压供水控制系统的硬件设计1_第2页
恒压供水控制系统的硬件设计1_第3页
恒压供水控制系统的硬件设计1_第4页
恒压供水控制系统的硬件设计1_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计(论文)设计论文题目恒压供水控制系统的硬件设计学院(系)电子信息工程学院专业电气工程及其自动化2012年6月26日目录摘要IIIABSTRACT4第一章绪论511城市供水系统的要求512变频调速系统的发展趋势513变频恒压供水产生的背景和意义514国内外研究概况615本课题的主要设计研究对象7第二章恒压供水系统821变频恒压供水系统822变频恒压供水控制方式的选择923变频恒压供水系统及工作原理9231系统的构成9232工作原理1024主电路接线图10第三章硬件的设计方案1231可编程控制器12311简介PLC12312PLC的特点13313PLC的国内外状况13314PLC的构成13315PLC的工作过程图14316PLC的选型14317PLC的接线1532变频器15321变频器的构成15322变频器的特点16323变频器的选型17324变频器的接线1833PID调节器1834压力传感器的接线2035原件表2036I/O表23第四章系统电路工作原理及分析2441原理2442分析25第五章软件的设计方案2651PLC控制26511手动运行和自动运行2752编程及介绍28521总程序的顺序功能图28522自动运行顺序功能图28523手动模式顺序功能图29524程序图30结论41参考文献42致谢43摘要随着社会市场经济的不断发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。首先,介绍了当前国内外恒压供水系统的发展情况,并提出不同的控制方案,通过研究和比较,详细说明了恒压供水系统的工作原理。本文采用变频器和PLC实现恒压供水和数据传输,然后用数字PID对系统中的恒压控制进行设计。其次,详细陈述了基于PLC变频恒压供水系统工程的方案设计,包括系统的硬件和软件设计,并对系统采取了可靠性措施进行了说明。结果表明,所设计的硬件电路及程序运行可靠,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益,能够满足用户恒压供水的要求。关键词变频器,恒压供水,PLC,压力传感器ABSTRACTWITHTHERAPIDDEVELOPMENTOFSOCIALISTICMARKETINGECONOMY,THEREISAGROWINGDEMANDFORBETTERQUALITYOFWATERSUPPLYANDHIGHERRELIABILITYOFSUPPLYSYSTEMINADDITION,CONSIDERINGTHECURRENTCOMMONENERGYCRISIS,ACHIEVINGTHESCHEMEOFAUTOMATINGTHEWATERSUPPLYSYSTEMSOITISANINEVITABLETENDENCYTODESIGNANDCREATEANENERGYSAVINGCONSTANTPRESSUREWATERSUPPLYSYSTEMOFEXCELLENTPERFORMANCEWITHTHEHELPOFADVANCEDTECHNIQUESOFAUTOMATION,MONITORCONTROLSYSTEMANDCOMMUNICATIONMEANWHILE,THESYSTEMCANALSOADAPTTOVARIOUSWATERSUPPLYREGIONSFIRSTLY,THISPAPERINTRODUCESTHECURRENTSITUATIONOFCONSTANTPRESSUREWATERSUPPLYSYSTEM,ANDPUTSFORWARDTHEDEVELOPMENTSITUATIONOFDIFFERENTCONTROLSCHEME,THROUGHRESEARCHANDCOMPARISON,DETAILEDDESCRIPTIONSOFCONSTANTPRESSUREWATERSUPPLYSYSTEMPRINCIPLEOFWORKTHISPAPERADOPTSINVERTERANDPLCCONSTANTPRESSUREWATERSUPPLYANDDATATRANSMISSION,THENUSEDIGITALPIDONSYSTEMOFCONSTANTPRESSURECONTROLDESIGNSECONDLY,ADETAILEDSTATEMENTBASEDONPLCFREQUENCYCONSTANTPRESSUREWATERSUPPLYSYSTEMENGINEERINGDESIGN,INCLUDINGTHESYSTEMHARDWAREANDSOFTWAREDESIGNOFTHESYSTEMADOPTEDRELIABILITYMEASURESAREPRESENTEDRESULTSSHOWTHATTHEDESIGNOFHARDWARECIRCUITANDPROGRAMRELIABLEOPERATION,HASGREATLYIMPROVEDTHEQUALITYOFWATERSUPPLY,ANDSAVETHEHUMAN,HASTHEOBVIOUSECONOMICBENEFITSANDSOCIALBENEFITS,ANDCANSATISFYTHEREQUIREMENTSOFUSERSCONSTANTPRESSUREWATERSUPPLYKEYWORDSVFSPEED,CONSTANTPRESSUREWATERSUPPLY,PLC,PRESSURESENSOR第一章绪论11城市供水系统的要求众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。变频调速式供水系统具有节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。12变频调速系统的发展趋势电机调速经历从静止的晶闸管整流器直流调选到交流感应电机变频调速的发展过程;变频调速又由VVVF的变压三变频控制的PWM变频调速发展到矢量控制变频调速,提高了变频器的恒定转矩输出范围和动静态特性,使得交流电机变频调运性能超过了直流电动机调压,调速性能;在矢量控制变频调速的基础上又发展了无速度传感器的矢量控制变频调速。在中、高压(3KV,6KV,10KV)等调速范围的应用也越来越多。随着电力电子器件的发展,特别是具备有将单极型和双极型大功率管两种器件组成的混合气传动装置的控制由模拟控制转向数字控制,使信息处理能力大幅度地增强1,出现了许多高、中压的变频设备(像西门子、ABB、罗克韦尔),本文介绍的变频调速电压等级是380V的低压变频器。13变频恒压供水产生的背景和意义我国泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等等原因,致使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。目前,大量的电能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当的比例。这一方面是出于我国居民多,用水量大,造成用电量大;另一方面是因为我国供水设备工作效率低,控制方式不够科学合理。造成不必要的能量浪费。因此,研究提水系统的能量模型,找出能够节能的控制策略方法,这里大有潜力可挖,是减少能耗,保障供水的一个很有意义的工作。传统的定(恒)速水泵供水系统是指水泵在额定转速下为系统提供一定水量的供水系统这种传统而简单的给水方式,无反馈信号和压力控制。用水量小时,系统压力增高,泵效率降低,管路内漏增加,阀门损坏加剧。用水量增大时,系统压力则降低,易造成系统高位供水点断流。实际上,定(恒)速水泵给水系统不但存在供水质量差,压力波动大的缺陷,而且不易实现有效的经济运行。对于用水量变化大的给水系统,特别是用水量小于二分之一额定流量时,水泵工况点偏离高效能区之外运行,能量损失严重2。水泵机组变频调速运行的研究和运用,目前已经成为城镇供水行业的重要课题,各地区根掘本地不同情况,也逐步开始运用。变频调速给水系统是由作为核心部件的变频调速器以及压力传感器、控制器、泵和管路组成的给水系统。它根据用户用水量的实际需求,设定压力控制值,控制器按传感器送来的用户用水量信息,控制变频器的频率,自动改变水泵电机的转速,最终达到调速及调节水量的目的。这种调速供水系统既能保持管网压力恒定,又能随时调整供水量。尽管水泵时常偏离额定流量工况点工作,但水泵的效率仍然维持在高效能区。PLC是一种专为工业环境应用而设计的数字运算电子系统,它是以微处理机为基础,综合了计算机技术、自动控制技术和通信技术等现代科技而发展起来的一种新型工业自动控制装置,是当今工业发达国家自动控制的标准设备之一。PLC在小型化、大型化、大容量、强功能等方而有了质的飞跃。采用该变频恒压供水系统可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时系统具有良好的节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。14国内外研究概况变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。目前国内有不少公司在做变频恒压供水的工程,大多采用国外品牌的变频器控制水泵的转速,水管的管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗干扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC)的变频恒压供水系统的水压闭环控制的研究处是不够的。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践中。采用变频调节以后,系统实现了软起动,电机起动电流从零逐渐增至额定电流,起动时时间相应延长,对电网没有较大的冲击,减轻了起动机械转矩对于电机的机械损伤,有效的延长了电机的使用寿命。这种调控方式以稳定水压为目的,各种优化方案都是以母管(市政来水管)进口压力保持恒定为条件。实际上,给水泵站的出口压力允许在一定范围内变化。因此这种调控方式缩小了优化范围,所得到的解为局部最优解,不能完全保证泵站始终工作在最优状态4。变频调速是优于以往任何一种调速方式(如调压调速、变极调速、串级调速等),是当今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术。以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本低能耗等诸多特点。15本课题的主要设计研究对象此次设计研究的对象是一栋楼房的供水系统。这栋楼有10层,由于高层楼对水压的要求高,在水压低时,高层用户将无法正常用水甚至出现无水的情况,水压高时将造成能源的浪费。采用PLC和变频技术相结合,引用计算机对供水系统进行远程监控和管理保证整个系统运行可靠,安全节能,获得最佳的运行工况。PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的恒压供水系统,本设计中有1个贮水池,3台水泵,采用部分流量调节方法,即3台水泵中只有1台水泵在变频器控制下作变速运行,其余水泵做恒速运行。PLC根据管网压力自动控制各个水泵之间切换,并根据压力检测值和给定值之间偏差进行PID运算,输出给变频器控制其输出频率,调节流量,使供水管网压力恒定供给每一个用户。第二章恒压供水系统21变频恒压供水系统随着变频技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等有着重要意义。变频恒压供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。目前变频恒压供水系统正向高可靠性、全数字化微机控制、多品种系列化的方向发展。变频恒压供水系统能适用生活水、工业用水以及消防用水等多种场合的供水要求,该系统具有以下特点1供水系统的控制对象是用户管网的水压,它是一个过程控制量,同其他一些过程控制量如温度、流量、浓度等一样,对控制作用的响应具有滞后性。同时用于水泵转速控制的变频器也存在一定的滞后效应。2用户管网中因为有管阻、水锤等因素的影响,同时又由于水泵自身的一些固有特性,使水泵转速的变化与管网压力的变化成正比,因此变频调速恒压供水系统是一个线性系统。3当出现意外的情况如突然停水、断电、泵、变频器或软启动器故障等时,系统能根据泵及变频器或软启动器的状态,电网状况及水源水位,管网压力等工况点自动进行切换,保证管网内压力恒定。在故障发生时,执行专门的故障程序,保证在紧急情况下的仍能进行供水。4水泵的电气控制柜,其有远程和就地控制的功能和数据通讯接口,能与控制信号或控制软件相连,能对供水的相关数据进行实时传送,以便显示和监控以及报表打印等功能。5用变频器进行调速,用调节泵和固定泵的组合进行恒压供水,节能效果显著,对每台水泵进行软启动,启动电流可从零到电机额定电流,减少了启动电流对电网的冲击同时减少了启动惯性对设备的大惯量的转速冲击,延长了设备的使用寿命。22变频恒压供水控制方式的选择目前国内变频恒压供水设备电控柜的控制方式有逻辑电子电路控制方式、单片微机电路控制方式、新型变频调速供水设备。综合考虑,本次设计采用新型变频调速供水设备的控制方式。图21供水系统总方案图23变频恒压供水系统及工作原理231系统的构成图22系统原理图如图23所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器反馈05V电压信号或压力变送器反馈420MA电流;变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。232工作原理合上空气开关,供水系统投入运行。将手动、自动开关打到自动上,系统进入全自动运行状态,PLC中程序首先接通KM6,并起动变频器。根据压力设定值根据管网压力要求设定与压力实际值来自于压力传感器的偏差进行PID调节,并输出频率给定信号给变频器。变频器根据频率给定信号及预先设定好的加速时间控制水泵的转速以保证水压保持在压力设定值的上、下限范围之内,实现恒压控制。在运行频率到达上限,会将频率到达信号送给PLC,PLC则根据管网压力的上、下限信号和变频器的运行频率是否到达上限的信号,由程序判断是否要起动第2台泵或第3台泵。当变频器运行频率达到频率上限值,并保持一段时间,则PLC会将当前变频运行泵切换为工频运行,并迅速起动下1台泵变频运行。此时PID会继续通过由远传压力表送来的检测信号进行分析、计算、判断,进一步控制变频器的运行频率,使管压保持在压力设定值的上、下限偏差范围之内。24主电路接线图图23主电路图电机有两种工作模式即在工频电下运行和在变频电下运行。KM1、KM3、KM5分别为电动机M1、M2、M3工频运行时接通电源的控制接触器,KM0、KM2、KM4分别为电动机M1、M2、M3变频运行接通电源的控制接触器。热继电器FR是利用电流的热效应原理工作的保护电路,它在电路中的用作电动机的过载保护。熔断器(FU)是电路中的一种简单的短路保护装置。使用中,由于电流超过允许值产生的热量使串接于主电路中的熔体熔化而切断电路,防止电气设备短路和严重过载。第三章硬件的设计方案31可编程控制器311简介PLCPLC即可编程控制器(PROGRAMMABLELOGICCONTROLLER,是指以计算机技术为基础的新型工业控制装置。在1987年国际电工委员会(INTERNATIONALELECTRICALCOMMITTEE)颁布的PLC标准草案中对PLC做了如下定义PLC英文全称PROGRAMMABLELOGICCONTROLLER,中文全称为可编程逻辑控制器,定义是一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程PLC是可编程逻辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用,可以说有半导体的地方就有PLC。图31PLC的硬件结构框图312PLC的特点现代可编程控制器不仅能实现对开关量的逻辑控制,还具有数学运算、数学处理、运动控制、模拟量PID控制、通信网络等功能。在发达的工业化国家,可编程控制器已经广泛的应用在所有的工业部门,其应用已扩展到楼宇自动化、家庭自动化、商业、公用事业、测试设备和农业等领域。归纳可编程控制器主要有以下几方面的优点1)编程方法简单易学2)功能强,性能价格比高3)硬件配套齐全,用户使用方便,适应性强4)无触点免配线,可靠性高,抗干扰能力强5)系统的设计、安装、调试工作量少6)维修工作量小,维修方便7)体积小,能耗低。313PLC的国内外状况在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称PROGRAMMABLE,是世界上公认的第一台PLC314PLC的构成从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,按照一定规则组合配置。315PLC的工作过程图图32PLC的扫描工作过程PLC是在系统软件的控制和指挥下,采用循环顺序扫描的工作方式,其工作过程就是程序的执行过程,它分为输入采样、程序执行和输出刷新三个阶段。PLC在I/O处理方面必须遵守的规则如下输入映像寄存器的数据,取决于输入端子板在上一个刷新时间的状态;程序如何执行,取决于用户所编的程序和输入映像寄存器、元件映像寄存器中存放的所需软元件的状态;输出映像寄存器(包含在元件映像寄存器)的状态,由输出指令的执行结果决定。输出锁存器中的数据,由上一个刷新时间输出映像寄存器的状态决定;316PLC的选型目前,世界上有PLC厂商200多家,各种型号产品几千种。PLC产品按地域上分成三个流派,美国AB、GE;欧洲德国的西门子、法国的TE;日本三菱电机、欧姆龙。依据国内PLC市场的研究得到的样本分析,60左右的用户使用了这些品牌的PLC产品。综合考虑,本系统选用西门子S7200系列的CPU222AC/DC型PLC。水泵M1、M2,M3可变频运行,也可工频运行,需PLC的6个输出点,变频器的运行与关断由PLC的1个输出点,控制变频器使电机正转需1个输出信号控制,报警器的控制需要1个输出点,输出点数量一共9个。控制起动和停止需要2个输入点,变频器极限频率的检测信号占用PLC2个输入点,系统自动/手动起动需1输入点,手动控制电机的工频/变频运行需6个输入点,控制系统停止运行需1个输入点,检测电机是否过载需3个输入点,共需15个输入点。系统所需的输入输出点数量共为24个点。317PLC的接线图33PLC的接线图Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M3的变频运行,Y5接KM5控制M3的工频运行。X0接起动按钮,X1接停止按钮,X2接变频器的FU接口,X3接变频器的OL接口,X4接M1的热继电器,X5接M2的热继电器,X6接M3的热继电器。32变频器321变频器的构成通常由变频器主电路(IGBT、BJT、或GTO作逆变元件)给异步电动机提供调压调频电源。此电源输出的电压或电流及频率,由控制回路的控制指令进行控制。而控制指令则根据外部的运转指令进行运算获得。图34变频器的构成1主电路给异步电动机提供调压调频电源的电力变换部分,称为主电路。图35所示是典型的电压逆变器的例子,其主电路由三部分构成,将工频电源变换为直流功率的“整流器”,吸引在整流和逆变时产生的电压脉动的“平波回路”以及将直流功率变换为交流功率的“逆变器”。另外,异步电动机需要制动时,有时要附加“制动回路”。图35典型的电压型逆变器一例2控制电路给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路。控制电路够成主要包括运算电路、电压/电流检测电路、驱动电路、速度检测电路、保护电路。322变频器的特点变频器具有过压、欠压、过流、过载、短路、失速等自动保护功能。能实现电机软起动,减小电气和机械冲击噪音,延长设备使用寿命。变频恒压供水系统的特点主要有节能;占地面积小,投人少,效率高;配置灵活,功能齐全,自动化程度高;减少供水方式的二次污染;可以实现无人值守,节省了人力物力。323变频器的选型根据设计的要求,本系统选用MCIORMASTER440系列的HVAC风机和水泵节能型012KW250KW,额定电压380V500V。图36变频器的构造324变频器的接线管脚STF接PLC的Y7管脚,控制电机的正转。X2接变频器的FU接口,X3接变频器的OL接口。频率检测的上/下限信号分别通过OL和FU输出至PLC的X2与X3输入端作为PLC增泵减泵控制信号。图37变频器接线图33PID调节器仅用P动作控制,不能完全消除偏差。为了消除残留偏差,一般采用增加I动作的PI控制。用PI控制时,能消除由改变目标值和经常的外来扰动等引起的偏差。但是,I动作过强时,对快速变化偏差响应迟缓。对有积分元件的负载系统可以单独使用P动作控制。对于PD控制,发生偏差时,很快产生比单独D动作还要大的操作量,以此来抑制偏差的增加。偏差小时,P动作的作用减小。控制对象含有积分元件的负载场合,仅P动作控制,有时由于此积分元件的作用,系统发生振荡。在该场合,为使P动作的振荡衰减和系统稳定,可用PD控制。换言之,该种控制方式适用于过程本身没有制动作用的负载。RTET比例积分UT水泵管网YT实际压力给定压力频率转速压力变送器微分图38PID控制框图通过对被控制对象的传感器等检测控制量反馈量,将其与目标值温度、流量、压力等设定值进行比较。若有偏差,则通过此功能的控制动作使偏差为零。也就是使反馈量与日标值相一致的一种通用控制方式。它比较适用于流量控制、压力控制、温度控制等过程量的控制。在恒压供水中常见的PID控制器的控制形式主要有两种硬件型和软件型。根据设计的要求,本系统的PID调节器内置于变频器中。图39PID控制接线图34压力传感器的接线压力传感器使用CYYZ1001型绝对压力传感器。改传感器采用硅压阻效应原理实现压力测量的力电转换。传感器由敏感芯体和信号调理电路组成,该传感器的量程为025MPA,工作温度为560,供电电源为283V(DC)。图310压力传感器的接线图35原件表水泵M1、M2选用40160IA型,M3选用40160I型,31120583PIAU32279热继电器的选择选用最小的热继电器作为电机的过载保护热继电器FR,FR1FR2可选用规格其型号为TKE02TC,额定电流58A,FR3可选用规格其型号为TKE02UC,额定电流为69A。熔断器的选择在控制回路中选用RT18系列。接触器的选择选用规格为SCE03C,功率3KW。按钮SB的选择PLC各输入点的回路的额定电压直流24V,各输入点的回路的额定电流均小于40MA,按钮均只需具有1对常开触点,按钮均选用LAY311型,其主要技术参数为UN24VDC,IN03A,含1对常开和1对常闭触点。表31元件表总图元件符号型号个数可编程控制器PLC西门子S7200系列(CPU222AC/DC型)1变频器MCIORMASTER41水泵型号为100DL3,其自带电机功率为30KW。表32水泵的参数表表33变频器的参数40HVACEC014500/3接触器KMSCE03C7M1,M240160IA2水泵M340160IA1闸刀开关QSHD11100/181FU1,FU2RT186A2熔断器FU3RT188A1FR1FR2TKE02TC2热继电器FR3KE02UC1压力传感器KKCYYZ100110符号型号流量M3/H扬程M转速R/MIN电机功率KWM1,M240160IA1128290022水泵M340160IA12532290030变频器适用电机容量(KW输出额定容量KVA输出额定电流(A)过载能力电源额定输入交流电压/频率冷却方式恒压变频供水系统输出压力一般小于06MPA,输出为0到5V电压模拟信号。36I/O表输入功能输出功能I00变频器高限信号Q001号电机接变频器I01变频器低限信号Q011号电机接工频电源MCIORMASTER440系列HVAC(三菱)55911215060S,20005S反时限特性3相,380V至500V50HZ/60HZ强制风冷I02启动新号Q022号电机接变频器I03停止信号Q032号电机接工频电源I041号电机启动信号Q043号电机接变频器I051号电机停止信号Q053号电机接工频电源I062号电机启动信号Q06变频器运行停止信号I072号电机停止信号3L报警指示灯I103号电机启动信号I113号电机停止信号第四章系统电路工作原理及分析41原理合上空气开关,供水系统投入运行。将手动自动开关打到自动上,系统进入全自动运行状态,PLC中程序首先接通KM0,并起动变频器。根据压力设定值(根据管网压力要求设定)与压力实际值(来自于压力传感器)的偏差进行PID调节,并输出频率给定信号(IRF)给变频器。变频器根据频率给定信号及预先设定好的加速时间控制水泵的转速以保证水压保持在压力设定值的上下限范围之内,实现恒压控制。同时变频器在运行频率到达上限(设定为工频50HZ),会将频率到达信号送给PLC,PLC则根据管网压力的上下限信号和变频器的运行频率是否到达上限的信号,由程序判断是否要起动第2台泵(或第3台泵)。当变频器运行频率达到频率上限值,并保持一段时间(程序设定为15秒),则PLC会将当前变频运行泵切换为工频运行,并迅速(时间设定为5秒)起动下一台泵变频运行。此时PID会继续通过由远传压力表送来的检测信号进行分析,计算,判断,进一步控制变频器的运行频率,使管压保持在压力设定值的上下限偏差范围之内。增泵工作过程假定增泵顺序为L、2、3泵。开始时,1泵电机在PLC控制下先投入调速运行,其运行速度由变频器调节。当供水压力小于压力预置值时变频器输出频率升高,水泵转速上升,反之下降。当变频器的输出频率达到上限(50HZ),并稳定运行15S后,如果供水压力仍没达到预置值,则需进入增泵过程。在PLC的逻辑控制下将1泵电机与变频器连接的电磁开关断开,延时1秒后,1泵电机切换到工频运行,同时变频器与2泵电机连接,控制2泵调速运行。如果还没到达设定值,则继续按照以上步骤将2泵切换到工频运行,控制3泵投入变频运行。减泵工作过程减泵顺序依次为1,2,3泵。当供水压力大于预置值时,变频器输出频率降低,水泵速度下降,当变频器的输出频率达到下限(30HZ),并稳定运行一段时间(30S)后,把变频器控制的水泵停机,如果供水压力仍大于预置值,则将下一台水泵由工频运行切换到变频器调速运行,并继续减泵工作过程。如果在晚间用水不多时,当最后一台正在运行的主泵处于低速运行时,如果供水压力仍大于设定值,则停机并启动辅泵投入调速运行,从而达到节能效果。42分析该系统逻辑控制采用PLC控制变频器实现调速恒压供水,使用方便,工作可靠,系统压力恒定,具有较好的控制效果。该系统采用变频器调节水泵转速,使系统实现了高效节能,节能效率可达40左右,同时由于采用变频器对电机实现软起动,减少了设备损耗,延长了水泵,电机设备的使用寿命。系统采用闭环控制,参数超调波动范围小,偏差能及时进行控制。变频器的加速和减速可根据工艺要求自动调节,控制精度高,能保证生产工艺稳定,而且由于变频调速器具有十分灵敏的故障检测,诊断,数字显示功能,提高了水泵运行的可靠性。综上所述,采用PLC和变频器为核心部件构成的变频恒压供水系统,具有很强的实用性,为供水领域的技术革新,开辟了切实有效的途径。系统采用3台水泵并联运行方式,压力传感器将主水管网水压变换为电信号,经模拟量输入模块,输入PLC,PLC根据给定的压力设定值与实际检测值进行PID运算,输出控制信号经模拟量输出模块至变频器,调节水泵电机的供电电压和频率。当用水量较小时,一台泵在变频器的控制下稳定运行,当用水量大到水泵全速运行也不能保证管网的压力稳定时,PLC给定的压力下限信号与变频器的高速信号同时被PLC检测到,PLC自动将原工作在变频状态下的泵投入到工频运行,以保持压力的连续性,同时将下一台备用泵用变频器启动后投入运行,以加大管网的供水量保证压力稳定。若2台泵运转仍不能满足压力的要求,则依次将变频工作状态下的泵投入到工频运行,再将一台备用泵投入变频运行,当用水量减少时,首先表现为变频器已工作在最低速信号有效,这时压力上限信号入仍出现,PLC首先将最先工频运行的泵停掉,以减少供水量。当上述2个信号仍存在时,PLC再停掉第2台工频运行的电机,直到最后一台泵用变频器恒压供水。所有水泵电机从停止到启动及从启动到停止都由变频器来控制,实现带载软起动,避免了启动大电流给水泵电机带来冲击,相对延长了电机的使用寿命。同时,系统供水采用变频泵循环方式,以“先开先关”的顺序关泵,工作泵与备用泵不固定死,这样,既保证供水系统有备用泵,又保证系统泵有相同的运行时间,有效的防止因为备用泵长期不用发生锈死现象,提高了设备的综合利用率,降低了维护费用。第五章软件的设计方案51PLC控制PLC在系统中的作用是控制交流接触器组进行工频变频的切换和水泵工作数量的调整。工作流程如图41所示。图51PLC程序流程图系统起动之后,检测是自动运行模式还是手动运行模式。如果是手动运行模式则进行手动操作,人们根据自己的需要操作相应的按钮,系统根据按钮执行相应操作。如果是自动运行模式,则系统根据程序及相关的输入信号执行相应的操作。手动模式主要是解决系统出错或器件出问题在自动运行模式中,如果PLC接到频率上限信号,则执行增泵程序,增加水泵的工作数量。如果PLC接到频率下限信号,则执行减泵程序,减少水泵的工作数量。没接到信号就保持现有的运行状态。511手动运行和自动运行1手动运行当按下SB7按钮,用手动方式。按下SB10手动启动变频器。当系统压力不够需要增加泵时,按下SBN(N1,3,5)按钮,此时切断电机变频,同时启动电机工频运行,再起动下一台电机。为了变频向工频切换时保护变频器免于受到工频电压的反向冲击,在切换时,用时间继电器作了时间延迟,当压力过大时,可以手动按下SBN(N2,4,6)按钮,切断工频运行的电机,同时启动电机变频运行。可根据需要,停按不同电机对应的启停按钮,可以依次实现手动启动和手动停止三台水泵该方式仅供自动故障时使用2自动运行由PLC分别控制某台电机工频和变频继电器,在条件成立时,进行增泵升压和减泵降压控制升压控制系统工作时,每台水泵处于三种状态之一,即工频电网拖动状态、变频器拖动调速状态和停止状态系统开始工作时,供水管道内水压力为零,在控制系统作用下,变频器开始运行,第一台水泵M1,启动且转速逐渐升高,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间M1处在调速运行状态当用水量增加水压减小时,通过压力闭环调节水泵按设定速率加速到另一个稳定转速反之用水量减少水压增加时,水泵按设定的速率减速到新的稳定转速当用水量继续增加,变频器输出频率增加至工频时,水压仍低于设定值,由PLC控制切换至工频电网后恒速运行同时,使第二台水泵M2投入变频器并变速运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,每当加速运行的变频器输出频率达到工频时,将继续发生如上转换,并有新的水泵投人并联运行当最后一台水泵M3投人运行,变频器输出频率达到工频,压力仍未达到设定值时,控制系统就会发出故障报警降压控制当用水量下降水压升高,变频器输出频率降至起动频率时,水压仍高于设定值,系统将工频运行时间最长的一台水泵关掉,恢复对水压的闭环调节,使压力重新达到设定值当用水量继续下降,每当减速运行的变频器输出频率降至起动频率时,将继续发生如上转换,直到剩下最后一台变频泵运行为止。52编程及介绍521总程序的顺序功能图系统分为自动运行和手动运行两部分图52总程序的顺序功能图522自动运行顺序功能图按下SB8按钮,系统进入自动运行模式,顺序功能图如43所示。图53自动运行顺序功能图Y0接KM0控制M1的变频运行,Y1接KM1控制M1的工频运行;Y2接KM2控制M2的变频运行,Y3接KM3控制M2的工频运行;Y4接KM4控制M3的变频运行,Y5接KM5控制M3的工频运行系统起动时,KM1闭合,1泵以变频方式运行。当变频器的运行频率超出一个上限信号后,PLC通过这个上限信号后将1水泵有变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频起动第2水泵。如果再次接收到变频器上限信号,则KM3断开KM2吸合,第2水泵由变频转为工频运行,3水泵变频起动。如果变频器频率偏低,即压力过高,输出的下限信号使PLC关闭KM5、KM2,开启KM3,2水泵变频起动。再次接到下限信号就关闭KM3、KM0,吸合KM1,只剩1水泵变频运行。为了防止出现某台电动机既接工频电又接变频电设计了电气互锁。在同是控制M1电动机的两个接触器KM1、KM0线圈中分别串入了对方的常闭触头形成电气互锁。523手动模式顺序功能图当按下SB9按钮,系统进入手动运行模式。系统的每步动作都必须有相应的操作。顺序功能图如图44所示。图54自动运行顺序功能图按下按钮SB9之后,启动了变频器,系统进入手动运行模式。当用户按下SBN(N1,3,5)三台电机分别处于工频运行,当用户按下SBN(N2,4,6)三台电机分别处于变频运行。可以多台电机于不同的频率工作,但一台电机只能以一种频率下工作。(如1电机,如果控制它工作的SB1,SB2按钮被同时按下则发出警报且电机无法起动。)524程序图结论本文通过恒压供水系统以PLC和变频器为核心进行设计,借助于PLC强大而灵活的控制功能和内置PID的变频器优良的变频调速性能,实现了恒压供水的控制。使我学到了很多知识,积累了许多宝贵的经验,锻炼了自己的独立思考能力和实际动手能力,学会了如何综合实施一个工程项目的研究与设计。该系统采用PCL控制变频器进行PID调节,按实际需要随意设定压力给定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论