已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
InternationalJournalofEngineeringandTechnologyVolume2No.10,October,2012ISSN:2049-34442012IJETPublicationsUK.Allrightsreserved.1717AnInverseKinematicAnalysisofaRoboticSealerAkinolaA.Adeniyi1,AbubakarMohammed2,AladeniyiKehinde31DepartmentofMechanicalEngineering,UniversityofIlorin,Ilorin,Nigeria2DepartmentofMechanicalEngineering,FederalUniversityofTechnology,Minna,Nigeria3DepartmentofScienceLaboratoryTechnology,RufusGiwaPolytechnic,Owo,NigeriaABSTRACTAplanarroboticsealingorbrandstampingmachineispresentedforanautomatedfactoryline.Theappropriatetimetosealortostampanobjectisbasicallydeterminedbyamotorcontrollerwhichreliescriticallyonwhetherornottheobjectisinthebestposition.Theextentofprotractionandretractionofthepistonheadislargelydictatedbyaninfraredsensor.Giventheextenttoprotractorretractthepistonhead,theangulardisplacementsofthelinkrequiredaredeterminedusingtheInverseKinematic(IK)techniques.Theinertiaandgravityeffectsofthelinkshavebeenignoredtoreducethecomplexityoftheequationsandtodemonstratethetechnique.Keywords:ForwardKinematics,InverseKinematics,Robotics,Sealer.1.INTRODUCTIONAnautomatedfactoryusesanumberofmechanicallinkselectronicallycontrolledtoachievetasks.Thebenefitsoffactoryautomationaremanyandofstrategicimportancetomanagement1.Standardmechanicallinksareusuallypoweredwithelectricalmotors,pneumaticsystemsorsolenoids.Inamanuallyoperatedmachine,thehumanperformsvisualchecksandotherstandardchecksthataretobereplicatedbyautomation.Theinterestofthisworkiscenteredonahypotheticalsealingmachinewhichisusedforstampingsomesignaturesandlogosasdoneinabrandingfactoryline.Inversekinematicanalysisisappliedtoenableusdetermineangulardisplacementsofthelink.Kinematicsinvolvesthestudyofmotionwithoutconsiderationfortheactuatingforces.InverseKinematics(IK)isamethodfordeterminingthejointanglesanddesiredpositionoftheend-effectorsgivenadesiredgoaltoreachbytheendeffectors1.AfeasibilityofusingaPIDcontrollerwasstudiedbyNagchaudhuri2foraslidercrankmechanismbutwithoutanoffset.Tolanietal3reviewedandgroupedthetechniquesofsolvinginversekinematicsproblemsintoseven.ThetechniquesaretheNewton-Raphsonsmethodanditsothervariants.TherearetheJacobianandthevariantswithpseudo-inverse(otherwiseknownastheMoore-Penroseinverse)forsquareornon-squareJacobian.Othermethodsarethecontrol-theorybasedandtheoptimisationtechniques.Anumberofauthors1,4-7haveproposedalgorithmsforsolvingIKproblemswhichincludebutnotlimitedtoNeuralNetworkalgorithm,CyclicCoordinateDescentclosureandInexactstrategy,butlikeeveryothertechniquesforagivenproblemthechoiceofmethoddependsonthespecificsoftheproblem.Buss8discussedtheJacobiantranspose,theMoore-PenroseandtheDampedLeastSquarestechniques.Intermsofcomputationalcost,theJacobiantransposemethodisthecheapbutcanperformpoorlybasedontherobotconfigurations.InthisworktheJacobiantransposetechniqueill-performedbuttheJacobianInversetechniqueissuitableandmoresoitisasimple2Dplanarrepresentationoftheproblemwithonly4degreesoffreedom.2.OPERATIONSOFTHEROBOTICLINKFig.1showstheschematicdiagramoftheroboticsealingsystem.Thecappingorstampingisachievedwiththepistonorramhead,P.Cistheconveyorline.Thecapsorthebrandingheadsareplacedinpositionandsensedbyaninfraredsensor,S.Theinstructiontosealorbrandisdependentonfeedbackfromthesensor.Iftheitemtobebranded,cappedorstampedisoutofplaceattheinstancewhentheramheadwasgoingtotouch,thesensorfeedbackwillbetoretractthehead.Itcanalsobetonotgotoofar.Therecanbearangeoffeedbacktothemotorcontroller,M.Thiskindofcontrolsystemissimilartowhatahumanoperatorwoulddoifitweremanuallyoperated.Theuseofsensorsandfastrespondingmotorcontrollerwillmakethishypotheticalmachineaveryusefultoolinafactoryperformingthiskindofmundanetask.Thisfactorysub-lineisasimpleslider-crankmechanismwithactuatorarmA.Inclearerterms,theinstructionswouldbetopressthepistonramtosealifthecapandthecontainerareinline;toreversethepistonincaseofajam;tonotpressthepistonramifeitherthecontainerorthecapisabsent;toInternationalJournalofEngineeringandTechnology(IJET)Volume2No.10,October,2012ISSN:2049-34442012IJETPublicationsUK.Allrightsreserved.1718pressfurtheriftheseallengthisshorterthanexpectedasmaybecausedbywearandtear.Thisclearlyshowsthatthepistondeterminestheangleofthelinkorthedirectionoractionofthemotor.Thisisaninversekinematicsproblem.Thesensorfeedbackpartismuchofacontrolengineeringproblem,notconsideredinthispaper.Fig.1:Theroboticsealingrigschematic3.ANALYSISFig.2isarepresentationoftheslider-crankmechanism.Thereisanoffset,f,ofthepistonaxisfromthemotoraxis,O1.O2istheaxisofthepistonwithmovingcoordinates(x,y).ThemotorrotatesclockwiseorcounterclockwiseaboutO1.Ifthecrankmakesdisplacementsonthepistonplane,itisequivalenttoamotionofexandey.Thismotioniscausedbythecrankmakinganangularmotionclockwiseorcounter-clockwise,.Theanglebetweentheconnectingrodandcrankmakesanangulardisplacementof,.Thisalsomeanstheangularshiftofismadebetweentheconnectingrodandthepistonorramplane.Fig.2:Theoffsetslidercrank(Cartesiancoordinateworld)Inacomputergameapplicationforthese,theangleswouldbeexplicitlyrequiredsothatthelinksdonot“physicallydisjoint”;foraphysicallyconnectedlink,themotorcontrolleronlywouldneedtheinstructiontomoveonlythecrank.3.1TheWorldCartesiancoordinatesystemisadopted.Clockwiseispositiveandmotiontorightandupwardsarepositive.TheTopDeadCentre(TDC)isattainedwhenthecrank,radiusr,andtheconnectingrod,lengthl,areinline.Thisisattainedwhen.fmisthemaximumvariableoffsetbasedonthegeometry.TheBottomDeadCentre(BDC)isreachedwhen.TheTDCandBDCwiththevariableoffsetareshowninFig.3.Fig.3:TheTopandBottomDeadcentreThepistonhasbeenconstrainedtomoveonlyinplanardirection,onthevectorof.Inthiswork,thedirectionvectoris,makingtheplaneat45otothehorizontal.3.2TheForwardKinematicsThedisplacementcausedbythemotormovingclockwisefromthepositioninFig.2isrepresentedinequation(1).Wheresubscripts(i,f)arerespectivelymeaninitialandfinalvalues.Thepositionatfisreachedinrealitysmoothlyforarotatingcrank,butthesmoothnesscanbereachedinfineincrementalsteps,inthenumericalapproach.Attheendofthesteppedincrements,thefinaldisplacementtothegoalisseenasafunctionofangularparametersgivenas:(1)Thelineardependenceoftheangles,inthisproblem,canhelptoreducethenumberofdegreesoffreedomtocomputeinequation(1).Itcanbeshownthat,therebymaking.Usingtrigonometry,theinstantaneousinitial,arbitrary,positionofthepistoninFig.2isgivenbyEquation(2).(2)(3)TheJacobianmatrixforisgiveninequation(4)andsimplifiedtoequation(5).InternationalJournalofEngineeringandTechnology(IJET)Volume2No.10,October,2012ISSN:2049-34442012IJETPublicationsUK.Allrightsreserved.1719J(4)J(5)Computingthenewpistonpositioninvolvessolvingequation(1).ThenewcoordinateofthepistonbythefirsttermofexpansionoftheTaylorseriescanbeshowntobegiveninequation(6).isthevectoroftherobotangulardisplacementsfortherelatedlinks.Mathematically,.Here,wehave.Thereforethecurrentpositionofthepistonorthepressingheadisapproximatelygiveninequation(6).Itshouldbenotedthatcanbemeasuredfromthehorizontaltofurtherreducetheequationsets,thisisreferredtoaselsewhereinthispaper.J(6)3.3InverseKinematicsTheproblemisnotthatofsolvingforXfgivenXiandbutitisthatofsolvingforgivenXi,andthedesiredXf.Thisisiterativelyimplementedsuchthatthetargetdisplacementofthepistonisgivenas.Thisisavectorofthepistondisplacementandcanberepresentedas.Sincethisisaplanarproblemwithnodisplacementsintheotherdirections,itreducestoa.Tosmoothenthepossiblejerkorjumpyeffect,thiscanbesteppedusingafactorofwhichcanbeselectedintuitivelybasedontheratioofrtoLbutandJistheinverseofJacobianmatrix.Thealgorithmchecksifthetargethasbeenreachedornot.Iterationisstoppedwhenthesolutioniswithinapre-determinedleveloferrororamaximumnumberofiterations.Thechoiceoftheselimitingvaluesshoulddependontheresponsetimeacceptable.Thiscanbecriticalforarealtimeapplication.J(7)4.RESULTANDDISCUSSIONSConsideracurrentorientationoftheroboticarmatanyarbitrarypositionwiththepistonheadatapositionP1.SupposethesensorsystemrequiresthepistontomovetoatargetnewpositionP2.Thesimulationisdoneforseveralarbitrarystartingpositionsofthecrankandresultsaresimilarforreachabletargets.Supposingthecrankangleisatacurrentorientationwithcrankangleof-5o,andthereisaninstructionfromthesensortoretractthepistonramheadby0.1timesthecrankarmlength.Thesimulationinstructsthecrankproceedstocounterclockwiseby15.58o,thiscorrespondstoanincreaseofto19.26oandcorrespondingly,reducesto86.32o.Fig.4showsthesimulationprogressofthepistonheadfromacurrentpositionP1tothenewtargetP2andthenumberofiterationsdone.Fig.4:CrankPositionandIterationwiththeJacobianInverseMatrixThetechniqueusedistheJacobianinversetechnique.TheJacobiantransposetechniqueisnotpredictableforthesameproblemandinthiscase,thesolutionsettlestoalocalminimumforonlyoneoftheanglesbuttheconvergencerateisfaster,seeFig.5.Fig.5:CrankPositionsusingtheInverseandTransposeoftheJacobianMatrixIfthereisarequesttoaphysicallyunreachabletarget,suchastoamorethantheTDCorBDClocations,P3,thesimulationrunsandstopsafterthemaximumnumberofiterationsoriftheJacobianMatrixbecomesun-invertible,Fig.6.0102030405060708090100-20-100CrankAnglePercenttoTargetCrankPositions0500010000NumberofIterationsInternationalJournalofEngineeringandTechnology(IJET)Volume2No.10,October,2012ISSN:2049-34442012IJETPublicationsUK.Allrightsreserved.1720Fig.6:UnreachableTargetsituation5.CONCLUSIONThispaperisfocusedontheapplicationoftheInverseKinematicstechniquetotheanalysisofaroboticlink,suchasobtainedinasealerofanautomatedfactory,withoutconsiderationfortheeffectsofinertiaeffects.TheJacobianinversetechnique,asmentionedinliteratures,ismorereliableinthisapplication.TheJacobiantransposeapproachisnotreliable.Thispaperhasdemonstratedtheapplicationoftheinversekinematicstoasimpleroboticsealer;thepistonisinstructedtoretractby0.1unitsasatestcase.ThenewcrankanglewasfoundmoreaccuratelywiththeJacobianInversetechniquebetterthattheJacobianTransposetechnique.Theproblemcanbeextendedtoincludethedynamicsforpossibleselectionoftheoptimaldrivingtorqueorelectricmotorselectionforthedrivingparts.REFERENCES1S.TejomurtulaandS.Kak,InverseKinematicsinroboticsusingneuralnetworks,InformationSciences,vol.116,pp.147-164,1999.2A.Nagchaudhuri,MechantronicRedesignofSliderCrankMechanism,inASMEInternationalMechnicalEngineeringCongress&Exposition:IMECE2002,NewOrl
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新入岗护士考试题及答案
- 2025年采购供应商管理实操训练考试试卷
- 2025年医疗健康管理师资格考试试卷及答案
- 矿山测量员创新实践强化考核试卷含答案
- 2025年施工机械安全操作规程培训考核创新试卷实战案例点评
- 2022年-2023年三支一扶之三支一扶行测模拟考试试卷A卷含答案
- 特定行业合规经营责任承诺书4篇
- 团队激励与员工考核评估框架
- 北京市建筑施工作业人员安全生产知识教育培训考核试卷(A B C D E)
- 公司产品信誉担保承诺函5篇
- T/CECS 10400-2024固废基胶凝材料
- GB/T 1040.1-2025塑料拉伸性能的测定第1部分:总则
- 构件扭曲截面性能同济大学顾祥林混凝土结构设计原理
- 绘本:《幼儿园的一天》
- 2019年安徽师范大学语言文学基础理论与写作考研真题
- 中国农业银行历年考试真题及答案汇总
- 结构demo轴承座强度分析
- 眼内炎玻璃体内注射药物配比
- GB/T 29554-2013超高分子量聚乙烯纤维
- GB/T 27984-2011饲料添加剂丁酸钠
- GB/T 18015.5-2007数字通信用对绞或星绞多芯对称电缆第5部分:具有600MHz及以下传输特性的对绞或星绞对称电缆水平层布线电缆分规范
评论
0/150
提交评论