已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计(论文)报告题目基于单片机的电子换号牌的设计系别专业班级学生姓名学号指导教师2013年4月THEAPPLICATIONOFELECTRONICNOSEABSTRACTPOSITIVEHUMANOLFACTORYORGANISACOMPLEXPHYSIOLOGICALREACTIONNATUREKINDOFODORTENSOFTHOUSANDS,EVENPROFESSIONALSSPECIALIZINGINODORIDENTIFICATIONWORKISOFTENRECOGNITIONERRORSKEYWORDSELECTRONICNOSECOMPUTERTECHNOLOGYDEVELOPEDOLFACTORYORGANSPHYSIOLOGICALREACTION“CUSTOMS“SECURITYMONITORINGNEURALNETWORKSODORSENSORIDENTIFICATIONINFRAREDSENSORINTRODUCTIONTHEELECTRONICNOSEDEVELOPEDAHIGHTECHPRODUCTSISSIMULATEDANIMALOLFACTORYORGAN,SCIENTISTSARESTILLNOTALLCLEARPRINCIPLEOFTHEANIMALSSENSEOFSMELLHOWEVER,WITHTHEDEVELOPMENTOFSCIENCEANDTECHNOLOGY,MOREAUTHORITATIVESOMEUNIVERSITIESINTHEWORLDHAVEDEVELOPEDELECTRONICNOSEHASAWIDERANGEOFAPPLICATIONS,MOSTNOTABLYTOTHENUMBEROFTHEUNIVERSITYOFHAMBURG,GERMANY,HASABSOLUTEAUTHORITYINTHESENSORFIELDINTHEWORLDTODAYELECTRONICNOSEISTHERESPONSEPATTERNTOIDENTIFYTHEODOROFTHEGASSENSORARRAYELECTRONICSYSTEMS,ITCANBEINAFEWHOURS,DAYSOREVENAFEWMONTHSTIMEWITHINACONTINUOUS,REALTIMEMONITORINGOFTHESPECIFICLOCATIONOFTHEODORCONDITIONIDENTIFYINGODORMAINMECHANISMOFTHEELECTRONICNOSEISTHATEACHSENSORINTHEARRAYHASADIFFERENTSENSITIVITYOFTHEMEASUREDGASTHECOREOFTHEDEVICEOFTHEELECTRONICNOSEGASSENSORGASSENSORSBASEDONTHEPRINCIPLEOFDIFFERENTTYPEOFMETALOXIDE,ELECTROCHEMICAL,ANDCONDUCTIVEPOLYMERTYPE,QUALITY,PHOTOIONIZATIONTYPECANBEDIVIDEDINTOMANYTYPESCURRENTLYTHEMOSTWIDELYUSEDISAMETALOXIDEHOWITWORKSELECTRONICNOSEISMAINLYCOMPOSEDOFTHREEPARTSOFAGASSENSORARRAY,SIGNALPREPROCESSINGANDPATTERNRECOGNITIONPRESENTEDINFRONTOFANACTIVEMATERIALOFTHESENSOR,ANODORSENSORCHEMICALINPUTISCONVERTEDINTOANELECTRICALSIGNALBYAPLURALITYOFSENSORRESPONSETOANODORTHEYCONSTITUTETHESENSORARRAYTOTHEODOROFTHERESPONSESPECTRUMOBVIOUSLY,THEVARIOUSCHEMICALCOMPONENTSINTHEODORSENSITIVEMATERIALSPLAYAROLEINTHISRESPONSESPECTRUMFORABROADSPECTRUMOFODORRESPONSESPECTRUMTOACHIEVETHEODORQUALITATIVEORQUANTITATIVEANALYSIS,THESENSORSIGNALMUSTBEAPPROPRIATEPRETREATMENTTOELIMINATENOISE,FEATUREEXTRACTION,SIGNALAMPLIFICATION,ETC,USINGASUITABLEPATTERNRECOGNITIONANALYSISMETHODFORPROCESSINGTHEREOFTHEORETICALLY,EACHODORWILLHAVEITSCHARACTERISTICRESPONSESPECTRUM,ACCORDINGTOITSCHARACTERISTICRESPONSESPECTRUMCANDISTINGUISHBETWEENSMALLSAMEODORWHILEGASSENSORSCONSTITUTINGTHEARRAYTOMEASURETHECROSSSENSITIVITYOFAVARIETYOFGASES,BYASUITABLEANALYTICALMETHOD,THEMIXEDGASANALYSISTHEELECTRONICNOSEISTHEUSEOFVARIOUSGASSENSINGDEVICEHASARESPONSETOTHISCHARACTERISTICBUTDIFFERENTFROMEACHOTHER,WITHTHEDATAPROCESSINGMETHODSTOIDENTIFYAVARIETYOFODOR,ODORQUALITYANALYSISANDEVALUATIONOFCOMPLEXCOMPONENTGASESTHEMAINMECHANISMOFTHEELECTRONICNOSEIDENTIFYEACHSENSORINTHEARRAYHASADIFFERENTSENSITIVITYOFTHEMEASUREDGAS,EG,HIGHRESPONSEONEGASMAYBEGENERATEDONASENSOR,WHILETHEOTHERSENSORISALOWRESPONSESIMILARLY,THE2NDGASGENERATINGHIGHRESPONSEOFTHESENSORISNOTSENSITIVEONTHE1STGASAND,ULTIMATELY,THEENTIRESENSORARRAYRESPONSEPATTERNISDIFFERENTFORDIFFERENTGASES,ITISTHISDIFFERENCE,TOENABLETHESYSTEMTOIDENTIFYAGASACCORDINGTOTHERESPONSEOFTHESENSORPATTERNELECTRONICNOSECANBESUMMARIZEDASFOLLOWSTHESENSORARRAYTHESIGNALPREPROCESSINGNEURALNETWORKSANDAVARIETYOFALGORITHMSCOMPUTERIDENTIFICATIONGASQUALITATIVEANDQUANTITATIVEANALYSISFUNCTIONALLYSPEAKING,THEGASSENSORARRAYISEQUIVALENTTOTHEBIOLOGICALOLFACTORYSYSTEMINALARGENUMBEROFOLFACTORYRECEPTORCELLS,NEURALNETWORKANDTHECOMPUTERTORECOGNIZETHEBIOLOGICALEQUIVALENTOFTHEBRAIN,THERESTISTHEEQUIVALENTOFTHEOLFACTORYNERVESIGNALTRANSDUCTIONSYSTEMFOREXAMPLE,THEMEASUREMENTOFTHEMETALOXIDESEMICONDUCTORMOSGASSENSORINRESPONSETOTHESCHEMATICDIAGRAMOFTHEVOLTAGESIGNALMOSGASSENSORISUSUALLYBEFORETHETESTSHALLBEHEATEDTO2500ORHIGHERINORDERTOWORKPROPERLYAFTERTHECHEMICALREACTIONOCCURSINTHETESTINGPROCESS,THEMOSGASSENSORANDTHESAMPLEGAS/ODOR,WILLCHANGEITSOWNGASSENSITIVEFILMCONDUCTIVITYANDRESISTANCEVALUES,LEADINGTOATERMINALVOLTAGEOFASAMPLINGRESISTORINSERIESTHERETOISCHANGEDDUETOSAMPLINGRESISTORISFIXED,SOTHEIMMEDIATEEXTRACTIONOFTHEENDOFTHESAMPLINGRESISTORVOLTAGESIGNALVOLTAGEMOSGASSENSORRESPONSECURVE图1FEATURESELECTRONICNOSERESPONSETIME,SPEEDDETECTION,UNLIKEOTHERINSTRUMENTS,SUCHASTHEGASCHROMATOGRAPHYSENSORS,HIGHPERFORMANCELIQUIDCHROMATOGRAPHYSENSORNEEDCOMPLEXPRETREATMENTPROCESSMEASURINGAWIDERANGEOFASSESSMENT,ITCANDETECTAVARIETYOFDIFFERENTTYPESOFFOODANDTOAVOIDHUMANERROR,GOODREPEATABILITYCANDETECTSOMEOFTHEHUMANNOSECANNOTDETECTTHEGAS,SUCHASPOISONGASORSOMEIRRITANTGASES,WHICHINMANYAREAS,ESPECIALLYINTHEFOODINDUSTRYPLAYSANINCREASINGLYIMPORTANTROLEANDGRAPHICALCOGNITIVEEQUIPMENTTOHELPITSSPECIFICITYGREATLYENHANCETHEDEVELOPMENTOFSENSORMATERIALSALSOCONTRIBUTEDTOTHEIMPROVEMENTOFITSREPETITIVE,ANDWITHTHEIMPROVEMENTOFBIOCHIPS,BIOTECHNOLOGYDEVELOPMENTANDINTEGRATIONTECHNOLOGY,ANDSOMENANOMATERIALSTHEAPPLICATIONOFELECTRONICNOSEWILLHAVEBROADAPPLICATIONPROSPECTSMANYDIFFERENTTYPESOFTHEELECTRONICNOSE,THETYPICALWORKINGPROGRAMTHATIS1SENSORINITIALIZATIONUSINGAVACUUMPUMPTOTHEAIRSAMPLINGLESSONSTOSMALLCONTAINERSFITTEDWITHTHEELECTRONICSENSORARRAYCHAMBER2DETERMINATIONOFTHESAMPLEANDDATAANALYSISSAMPLINGOPERATIONUNITTHEINITIALIZATIONOFTHESENSORARRAYISEXPOSEDTOTHEODORBODY,WHENTHECONTACTWITHTHESURFACEOFTHEACTIVEMATERIALOFTHEVOLATILECOMPOUNDSVOCANDTHESENSORULTRASONICSENSOR,TOPRODUCETHETRANSIENTRESPONSESUCHARESPONSEISRECORDEDANDTRANSMITTEDTOTHESIGNALPROCESSINGUNITFORANALYSIS,ANDSTOREDINTHEDATABASEOFALARGENUMBEROFVOCPATTERNCOMPARISON,IDENTIFICATION,ANDTODETERMINETHETYPEOFODOR3CLEANINGTHESENSORMEASUREDAFTERTHESAMPLEISFINISHED,USEOFALCOHOLVAPOR“FLUSH“THESENSORSURFACEOFTHEACTIVEMATERIAL,THEODORREMOVALMEASUREDBIMIXTUREINENTERNEWMEASUREMENTPRIORTOTHENEXTROUND,THESENSORSTILLIMPLEMENTINITIALIZATIONTHATIS,BETWEENTHEWORKAGAIN,EACHSENSORAREREQUIREDDRYAIRORSOMEOTHERREFERENCEGASCLEANINGTOMEETTHEBENCHMARKSTHEMEASUREDODOREFFECTOFTIMEISCALLEDTHE“RESPONSETIME“ANDTHEPURGEPROCESSANDTHEREFERENCEGASROLEOFTHESENSORARRAYUSEDINTHEINITIALIZATIONPROCESSTIMEISCALLEDTHE“RECOVERYTIME“THEELECTRONICNOSESYSTEMCONSISTSOFTWOPARTSINFORMATIONACQUISITIONTHETERMINALACQUISITIONTERMINALANDINFORMATIONPROCESSINGTERMINALPROCESSINGTERMINAL1COLLECTIONTERMINALISRESPONSIBLEFORCOLLECTINGTHESIGNALVOLTAGEOFTHEMOSGASSENSORARRAYPROCESSINGTERMINALVIAAHANDHELDCOMPUTERPDATOCOMPLETETHEDATAANALYSISANDPROCESSINGTWOTERMINALDATAEXCHANGEDBYTHETWOWIRELESSMODULECOLLECTIONTERMINALCONSISTSOFTHREEMAJORCOMPONENTSSAMPLINGSYSTEMS,ELECTRICALSYSTEMS,ASWELLASTHESENSORARRAYTHESAMPLINGSYSTEMCONSISTSOFTHETHEGASSENSORCAVITY,MICROPLOWPUMPANDTHREEWAYSOLENOIDVALVECIRCUITSYSTEMCONSISTSOFTHEFOLLOWINGFUNCTIONALMODULESANDPOWERTHEMICROCONTROLLER,ADCMODULE,DACCONDITIONINGMODULES,MEMORYMODULES,WIRELESSMODULESANDLITHIUMBATTERYTHESENSORCAVITYISPLACEDWITHTHESENSORARRAYCONSISTINGOFEIGHTCOMMERCIALTGSGASSENSORTHEWORKOFENERGYCONSUMPTIONOFTHEENTIRECOLLECTIONTERMINALIN6WABOUT,INTHECASEOFTHELITHIUMBATTERYWITHACAPACITYOF3800AMHPOWERED,ITISPOSSIBLETOWORKCONTINUOUSLY32HCOLLECTIONSOFTWAREONTHETERMINALISUNDERINKEILUVISION2DEVELOPMENTENVIRONMENTWITHCLANGUAGE,WRITINGGOODSOURCETHROUGHTHERS232SERIALBURNTOSTC89C516KDMICROCONTROLLER2PROCESSINGTERMINALBYAWIRELESSMODULE,MICROCONTROLLER,RS232SERIALPORTTOUSBINTERFACEMODULERS232TOUSB,ANDPDAWIRELESSMODULEWITHMICROCONTROLLERINTERFACEDESIGNCIRCUITWITHTHECOLLECTIONTERMINALBECAUSEONPDAUSBINTERFACE,ITISNECESSARYTODESIGNRS232SERIALTOUSBINTERFACECIRCUITTOCOMPLETETHEEXCHANGEOFDATABETWEENTHEMCUANDPDASTHEELECTRONICNOSESYSTEMSOFTWAREISDIVIDEDINTOTWOPARTSTHESOFTWAREISBASEDONPROCESSINGTERMINALLABVIEW71NATIONALINSTRUMENTATION,USAPLATFORMDEVELOPEDONAPDAWINDOWSXPSYSTEMELECTRONICNOSEINACOMPLETETESTPROCESS,HAVETOGOTHROUGHFOURSTAGESGROUNDSTATEPHASESAMPLINGSTAGE,HOLDINGPHASEANDTHERECOVERYPHASESTAGEINTHEBASESTATE,THETHREEWAYSOLENOIDVALVEISSWITCHEDTOTHEAIRPASSAGE,ANDAVOLTAGESIGNALOFTHESENSORARRAYTOAHORIZONTALBASELINETOBEATHREEWAYSOLENOIDVALVEISSWITCHEDTOTHESAMPLEGASCHANNELINTOTHESAMPLINGSTAGE,THESENSORARRAYRESPONSE,AFEWSECONDSAFTERTHEVOLTAGESIGNALVALUEROSETOAPEAKANDTHENSTABILIZED,TOBECLOSETOEQUILIBRIUM,THESYSTEMENTERSTHEHOLDINGPHASE,THREEWAYSOLENOIDVALVEREMAINSCONSTANTSAMPLEGASCHANNELTHELASTTOENTERTHERECOVERYPHASE,THREEWAYSOLENOIDVALVEISSWITCHEDBACKTOTHEAIRCHANNEL,RAPIDDECLINEINTHERESPONSECURVEOFTHESENSORARRAY,UNTILITISRESTOREDTOTHEBASELINEPOSITIONTHETIMEVALUEOFTHEFOURSTAGESOFTHETESTINGPROCESSBEFORETHESTARTOFTHETEST,YOUMUSTFIRSTSETONAPDATHEGROUNDSTATETIME,SAMPLINGTIME,HOLDTIMEANDRECOVERYTIMETHEN“START“COMMAND,THESYSTEMBEGANTOTESTISSUEDBYTHEPDACOLLECTIONTERMINALAFTERRECEIVINGTHEORDER,THEINTERNALMICROCONTROLLERINACCORDANCEWITHTHEINSTRUCTIONS,TIMERTOCONTROLTHETIMEOFTHEFOURSTAGESFIRST,THEMICROCONTROLLERWILLCONTROLTHEHEATINGVOLTAGEOFDACCONDITIONINGMODULEOUTPUTISUSEDTOHEATTHESENSORARRAY,ANDTHENCONTROLTHESIGNALVOLTAGEOFTHEADCMODULEACQUISITIONSENSORARRAYANDCHOOSETOGETTHEDATASAVEDTOTHEMEMORYMODULE,ORDIRECTLYTOTHERECEIVERBYTHEWIRELESSMODULEFEEDBACKPDATODOTHEANALYSISANDPROCESSINGAFTERTHEDATAACQUISITIONISCOMPLETED,PDASENDS“END“COMMAND,THESYSTEMSTOPSWORKINGDURINGTHENEXTROUNDOFTESTINGISREQUIREDBEFORETHEPDAISSUEA“RESET“COMMANDTOMAKETHESYSTEMCLEAREDBEFOREANEWROUNDOFTESTSINADDITION,INTHEPROCESSOFTESTING,YOUCANISSUECOMMANDSTHROUGHTHEPDAMINIATUREAIRPUMPANDTHREEWAYELECTRONICVALVECONTROLSWITCHAFTERTHETESTISSTOPPED,THEDATAOFTHESENSORARRAYCANBEREADTHROUGHTHE“OPEN“INSTRUCTIONTOOBTAINBEFOREANDRESPONSECURVESSTATISTICALMETHODSPRINCIPALCOMPONENTANALYSISPCAPRINCIPALCOMPONENTANALYSISREFERSTOSEVERALVARIABLESBYLINEARTRANSFORMATIONTOELECTAFEWERNUMBEROFIMPORTANTVARIABLESOFMULTIVARIATESTATISTICALANALYSISMETHOD,ALSOKNOWNASPRINCIPALCOMPONENTANALYSISITISASTATISTICALANALYSISMETHODTOGRASPTHEPRINCIPALCONTRADICTIONOFTHINGS,YOUCANPARSEOUTTHEMAININFLUENCINGFACTORSFROMDIVERSETHINGS,TOREVEALTHENATUREOFTHINGS,SIMPLIFYCOMPLEXPROBLEMSPCAASALINEARFEATUREEXTRACTIONTECHNOLOGY,DESIGNEDTOEXPLOITDATADIMENSIONALITYREDUCTIONIDEATHATTHECALCULATIONOFTHEMAINCOMPONENTSANDHIGHDIMENSIONALDATAISPROJECTEDONTOALOWERDIMENSIONALSPACE,MULTIINDICATORSINTOAFEWINDICATORS,SOASMUCHASPOSSIBLETOSHOWTHEINFORMATIONCONTAINEDINTHEORIGINALDATAPCAINELECTRONICNOSESFORANOBJECTIVEANALYSISOFTHEDIFFERENCESBETWEENTHESAMPLESCLUSTERANALYSISCACLUSTERANALYSISISAKINDOFSUBJECTSWEREDIVIDEDINTORELATIVELYHOMOGENEOUSGROUPSOFSTATISTICALANALYSISTECHNIQUESFROMASTATISTICALPOINTOFVIEW,THECLUSTERANALYSISISAWAYTOSIMPLIFYTHEDATATHROUGHDATAMODELINGCAISCLASSIFIEDBASEDONTHERELATIONSHIPBETWEENTHENUMBEROFTHEINDIVIDUALORVARIABLETHEOBJECTIVITYSTRONG,BUTVARIOUSCLUSTERINGMETHODSCANONLYBEACHIEVEDUNDERCERTAINCONDITIONSTHELOCALOPTIMUMWHETHERTHEFINALRESULTOFTHECLUSTERINGTOSETUP,TAKEIDENTIFICATIONOFEXPERTSDISCRIMINANTFACTORANALYSISDFATHEJUDGMENTFACTORANALYSISISASTATISTICALMETHODTODETERMINETHEINDIVIDUALCATEGORYOBSERVATIONSACCORDINGTOTHEKNOWNCLASSESOFTWOORMORESAMPLESTODETERMINEONEORMORELINEARDISCRIMINANTFUNCTIONDISCRIMINANTINDEX,THENANOTHERBODYTODETERMINEWHICHCATEGORYTHEDISCRIMINANTFUNCTIONBASEDONDISCRIMINATIONINDEXDFAACCORDINGTOTHERESULTSOFTHESTANDARDSAMPLEUSEDFORELECTRONICNOSESTOIDENTIFYBLINDBYRECOMBINATIONOFSENSORDATATOOPTIMIZETHEDIFFERENTIATED,ORTHROUGHTHESENSOROPTIMIZEDSELECTION,IEREMOVALOFTHESENSOR,NOCONTRIBUTIONORASMALLCONTRIBUTIONTOIMPROVETHERECOGNITIONCAPABILITY,ITSPURPOSEISTOBRINGTHEGROUPDISTANCEBETWEENTHEDIFFERENCEWITHINAMAXIMUMWHILEENSURINGGROUPMINIMUMARTIFICIALNEURALNETWORKANNTHEARTIFICIALNEURALNETWORKISABYIMITATEHUMANORANIMALNEURALNETWORKBEHAVIORALCHARACTERISTICS,MATHEMATICALMODELOFDISTRIBUTEDPARALLELINFORMATIONPROCESSINGTHISNETWORKRELIESONASYSTEMOFCOMPLEXPROCEDURES,BYADJUSTINGTHETHEINTERNALLARGENUMBEROFINTERCONNECTEDRELATIONSHIPSBETWEENNODES,SOASTOACHIEVETHEPURPOSEOFPROCESSINGINFORMATIONANNPROVIDEDINADVANCEANUMBEROFMUTUALLYCORRESPONDINGINPUTDATAOUTPUTDATA,ANALYSIS,GRASPTHEPOTENTIALBETWEENTHELAW,ANDULTIMATELYWITHANEW“INPUTDATA“ACCORDINGTOTHESELAWS,TODERIVEOUTPUT,THISTHELEARNINGPROCESSOFANALYSISISCALLED“TRAINING“THEAFOREMENTIONEDMETHODS,ANNISUSUALLYCONSIDEREDTOBEAPROMISINGAPPROACH,ANDITSFEATURESANDBENEFITSMAINLYINTHREEASPECTSWITHSELFLEARNINGANDADAPTIVEFUNCTIONASSOCIATIVEMEMORYFUNCTIONWITHHIGHSPEEDTOFINDTHEOPTIMALSOLUTIONCAPACITYINADDITION,ITISABLETOSOLVENONLINEARPROBLEMSBETTERTHANTHETRADITIONALSTATISTICALMETHODSINDEALINGWITHNOISEANDDRIFTCURRENTLY,MANYARTIFICIALNEURALNETWORKISUSEDFORPROCESSINGTHESIGNALOFTHESENSORARRAY,SUCHASBPNEURALNETWORK,RADIALBASISNEURALNETWORKS,FUZZYNEURALNETWORKS,SELFORGANIZINGNETWORK图2RESEARCHPROGRESSIN1964,WILKENSANDHATMANUSEOFGASONTHEELECTRODE,THEOXIDATIONREDUCTIONREACTIONOLFACTORYPROCESSELECTRONICANALOG,WHICHISTHEEARLIESTREPORTSONTHEELECTRONICNOSE1965,BUCKETALTHEUSEOFCHANGESINTHECONDUCTANCEOFAMETALANDASEMICONDUCTORGASMEASUREMENT,DRAVIEKSTHENUSINGTHECHANGEINCONTACTPOTENTIALMEASUREMENTSOFTHEGASHOWEVER,ASTHEGASCLASSIFICATIONWITHTHECONCEPTOFINTELLIGENTCHEMICALSENSORARRAYSUNTIL1982BYTHEUNIVERSITYOFWARWICK,UKPERSUADETAL,THEIRELECTRONICNOSESYSTEMCONSISTSOFTWOPARTSOFTHEGASSENSORARRAYANDPATTERNRECOGNITIONSYSTEMTHESENSORARRAYPARTOFTHEMOUNTAINTHREESEMICONDUCTORGASSENSORTHISSIMPLESYSTEMCANDISTINGUISHBETWEENTHEBRAIN,ACCORDINGTOTHETREEROSEOIL,CLOVEOIL,VOLATILECHEMICALSUBSTANCESFORDENTALODORINTHENEXTFIVEYEARS,THEELECTRONICNOSERESEARCHANDDIDNOTCAUSEEXTENSIVEATTENTIONINTHEINTERNATIONALACADEMICCOMMUNITY1987,HELDATTHEUNIVERSITYOFWARWICK,UK8THANNUALMEETINGOFTHEEUROPEANCHEMICALSENSINGRESEARCHORGANIZATIONISTHETURNINGPOINTOFTHESTUDYOFTHEELECTRONICNOSEATTHISMEETING,GARDNERLEDBYTHEUNIVERSITYOFWARWICKINGASSENSINGSENSINGRESEARCHTEAMPUBLISHEDAPAPERSENSORINGASMEASUREMENTPARTIESANDAPPLICATIONS,FOCUSINGONTHECONCEPTOFPATTERNRECOGNITION,CAUSEDACADEMIAEXTENSIVEINTERESTIN1989,THENORTHATLANTICTREATYORGANIZATIONHELDASPECIALCHEMICALSENSORINFORMATIONPROCESSINGSYMPOSIUM,DEDICATEDTOARTIFICIALOLFACTORYSYSTEMDESIGNOFTHESETWOTOPICSINAUGUST1991,THENORTHATLANTICTREATYORGANIZATIONWASHELDINICELANDTHEMATICSESSIONSOFTHEFIRSTELECTRONICNOSETHEELECTRONICNOSESINCETHENRAPIDDEVELOPMENT1994,GARDNEAREVIEWARTICLEONTHEELECTRONICNOSE,FORMALLYPROPOSEDTHECONCEPTOF“ELECTRONICNOSE“,MARKINGTHEELECTRONICNOSETECHNOLOGYINTOTHEMATURESTAGEOFDEVELOPMENTSINCE1994,AFTERMORETHANTENYEARSOFDEVELOPMENT,THEELECTRONICNOSERESEARCHHASMADERAPIDPROGRESSFORTHESTUDYOFTHEELECTRONICNOSEMAINLYINTHESIDEOFTHESENSORANDELECTRONICNOSEHARDWAREDESIGN,PATTERNRECOGNITIONTHEORY,THEELECTRONICNOSEINFOOD,AGRICULTURE,PHARMACEUTICAL,BIOFIELDAPPLICATIONS,ELECTRONICNOSE,ANDBIOLOGICALSYSTEMSWHILETHEHARDWAREDESIGNOFTHESENSORANDTHEELECTRONICNOSEANDELECTRONICNOSEAPPLICATIONSINTHEFIELDOFFOODANDAGRICULTUREISAHOTSPOTINTHESTUDYOFTHEELECTRONICNOSECREWETOWNINCHESHIRE,ENGLANDCOMPANYSUCCESSFULLYDEVELOPEDANELECTRONICNOSE,THETESTSSHOWEDTHATTHEPATIENTSKINWOUNDBACTERIACAN“SNIFF“OUTTHEEROSIONREMINDDOCTORSTOTAKEAPPROPRIATEMEASURESINATIMELYMANNERHISSTUDYOFTHEELECTRONICNOSEISAMATRIXCOMPOSEDOF32DIFFERENTORGANICPOLYMERSENSOR,VERYSENSITIVETOTHESMELLOFVARIOUSVOLATILECOMPOUND,THECOMPOUNDISDIFFERENT,THEREACTIONISDIFFERENTTYPICALLY,BACTERIALGROWTHWILLBEISSUEDCHEMICALODORTHEELECTRONICNOSECONTACTWITHTHEODOR,EACHSENSORRESISTANCEWILLCHANGE“FORMAT“SINCEEACHSENSORCORRESPONDINGTOADIFFERENTKINDOFCHEMICALSUBSTANCES,COMPOSEDOF32KINDSOFTHESAMECHANGEINRESISTANCEWOULDRESPECTIVELYREPRESENTTHE“FINGERPRINT“OFTHEDIFFERENTODORSTHETESTSSHOWEDTHATTHEELECTRONICNOSECANBEFOUNDIFTHEREISTHEPRESENCEOFBACTERIAONLYNEEDAFEWHOURSINTHEPAST,USINGTHEMETHODSOFTHELABORATORYTESTS,USUALLY13DAYSTOGETTHERESULTSTHEGASSENSORSINTHESYSTEMOFELECTRONICNOSE,THEGASSENSORISTHEPERCEIVEDODOROFTHEBASICUNIT,AREALSOKEYFACTORSHOWEVER,DUETOTHESTRONGSPECIFICITYOFTHEGASSENSOR,WHICHMAKESTHEDETECTIONOFTHEGASMIXTUREORTHEPRESENCEOFINTERFERINGGASES,THESINGLESENSORISDIFFICULTTOOBTAINAHIGHERACCURACYOFDETECTIONANDIDENTIFICATIONOFTHEREFORE,THEPORTIONOFTHEODORPERCEPTIONOFTHEELECTRONICNOSEOFTENUSEAPLURALITYOFAGASSENSORHAVINGADIFFERENTSELECTIVITY,ACCORDINGTOACERTAINARRAYCOMBINATION,THEUSEOFTHECROSSSENSITIVITYOFAVARIETYOFGASES,THEDIFFERENTODORMOLECULESINITSROLEOFTHESURFACEISCONVERTEDTOACONVENIENTCALCULATETHETIMERELATEDPHYSICALSIGNALGROUP,CANBEMEASUREDTOACHIEVETHEANALYSISOFTHEMIXEDGASATPRESENT,THEMAINTYPESOFELECTRONICNOSESENSORSCONDUCTIVESENSORS,PIEZOSENSORS,FIELDEFFECTSENSORS,FIBEROPTICSENSORS,VARIOUSSENSORSHAVETHEIROWNADVANTAGESANDDISADVANTAGES,THEELECTRONICNOSECANADAPTTOAVARIETYOFUSES图3APPLICATIONANDPROSPECTSFOODELECTRONICNOSEWIDERANGEOFAPPLICATIONSINTHEFIELDOFFOOD,INCLUDINGGRAINS,FRUITS,DAIRYPRODUCTS,MEAT,ALCOHOLANDTOBACCOWITHADISTINCTODORCHARACTERISTICSOFTHEFOODWITHTHEGROWINGDEPTHOFTHEELECTRONICNOSERESEARCH,HASBEENINVOLVEDINMANYASPECTSOFFOODSCIENCEACCORDINGTODIFFERENTAPPLICATIONPURPOSEANDFUNCTIONOFTHEELECTRONICNOSE,ELECTRONICNOSEINFOODRESEARCHCANBEDIVIDEDINTOTHEMONITORINGOFTHEPRODUCTIONPROCESS,THEFRESHNESSOFTHEASSESSMENT,THESHELFLIFEOFTHESURVEY,TRUEANDFALSEVERIFICATION,ANDOTHERASPECTSTHEMOSTIMPORTANTTHINGISTHATTHEQUALITYCONTROLOFDAIRYPRODUCTSINTHEPRODUCTIONPROCESSINITSMONITORINGOFTHEQUALITYANALYSISOFVOLATILECOMPONENTSOFMILKHASBECOMEONEOFTHEMOSTPOTENTIALMEANSTOOBTAINMILKINFORMATIONANDTODISTINGUISHTHEDIFFERENTKINDSOFMILK,ISMAINLYUSEDFORMONITORINGOFDIFFERENTHEATTREATMENTPROCESSTHEELECTRONICNOSEINTHEDAIRYPROCESSINGHASBEENWIDELYUSED,FOREXAMPLE,THETHEDANISHGREENCHEESEMATURITYPROCESSMONITORING,QUALITYCONTROLOFSWISSCHEESEFLAVORMIXTUREPATTERNRECOGNITIONANDCHEESETASTEDETECTION,ANDDETECTIONOFTHESHELFLIFEOFCHEESE,CHEESE,ANOTHERINCLUDETHEDETECTIONOFMICROORGANISMSINMILKDISTINGUISHDIFFERENTKINDOFICECREAM,ONLINEMONITORINGOFYOGHURTFERMENTATION2001,ITALYSCAPONEANDOTHERELECTRONICNOSETOIDENTIFYTWODIFFERENTHEATTREATMENTOFMILKONEISPASTEURIZED,ANOTHERTREATEDAFTERULTRAHIGHTEMPERATURESTERILIZATIONTHEFIVEDIFFERENTSNO2SENSORARRAY,INRESPONSETOTHEDATAOBTAINEDBYTHESOLGELTECHNOLOGYTOIDENTIFYTHETWOKINDSOFMILKPROCESSINGANDTRACKINGTHEDYNAMICPROCESSOFMILKCORRUPTIONREACTORBYPRINCIPALCOMPONENTANALYSIS,BEABLETOTELLITSGOODQUALITYTHEBADANDTHEWHOLECORRUPTPROCESS,ANDINTHEDAIRYPRODUCTIONINDUSTRYHASBEGUNTOAPPLYTHISINSTRUMENTTOGOFORQUALITYCONTROLANALYSISTHEEXPERIMENT,THESENSORHASAGOODREPEATABILITY,ANDTHERESPONSETIMEISVERYSHORT,ABOUT23MINTHEELECTRONICNOSEAPPLICATIONSINDAIRYBIGGESTADVANTAGEISTHATYOUCANLINECONTROL,WHICHCANNOTBECOMPAREDTOANYOTHERMETHODAMERICANSPANIGRAHIUSINGACOMMERCIALELECTRONICNOSESYSTEM,BASEDONTHECONDUCTIVEPOLYMERUSEDFORTHEANALYSISOFBEEFFRESHNESSRAWDATAOBTAINEDBYTHEELECTRONICNOSESYSTEMSUSINGDIFFERENTSIGNALPROCESSINGTECHNIQUESPRETREATMENT,PRETREATMENTDATAREPROCESSINGTOEXTRACTTHECHARACTERISTICSOFTHEDIFFERENTREGIONS,FOLLOWEDBYTHEUSEOFPRI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行向出资人报告制度
- 高考数学求2倍角题目及答案
- 导游学校考试题目及答案
- 2026年及未来5年市场数据中国酒类流通行业发展全景监测及投资方向研究报告
- 财务岗位惩罚制度
- 试论环境治理、恢复与补救制度
- 2025年幼教24笔试及答案
- 2025年安徽省合肥企事业编考试及答案
- 2025年金沙人事信息考试及答案
- 2025年村镇银行和农信社笔试及答案
- 2025年甘肃省中考物理、化学综合试卷真题(含标准答案)
- DLT5210.1-2021电力建设施工质量验收规程第1部分-土建工程
- 机械设备租赁服务方案
- 国家职业技术技能标准 6-23-03-15 无人机装调检修工 人社厅发202192号
- 乐理考试古今音乐对比试题及答案
- 电影放映年度自查报告
- 水泥窑协同处置危废可行性研究报告
- 心内介入治疗护理
- 初中毕业学业考试命题规范、原则、与教学建议
- 黎平县水竹冲水库工程环评报告
- 亚龙YL-235A光机电一体化介绍教学课件
评论
0/150
提交评论