




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计(论文)报告题目基于单片机的电子换号牌的设计系别专业班级学生姓名学号指导教师2013年4月THEAPPLICATIONOFELECTRONICNOSEABSTRACTPOSITIVEHUMANOLFACTORYORGANISACOMPLEXPHYSIOLOGICALREACTIONNATUREKINDOFODORTENSOFTHOUSANDS,EVENPROFESSIONALSSPECIALIZINGINODORIDENTIFICATIONWORKISOFTENRECOGNITIONERRORSKEYWORDSELECTRONICNOSECOMPUTERTECHNOLOGYDEVELOPEDOLFACTORYORGANSPHYSIOLOGICALREACTION“CUSTOMS“SECURITYMONITORINGNEURALNETWORKSODORSENSORIDENTIFICATIONINFRAREDSENSORINTRODUCTIONTHEELECTRONICNOSEDEVELOPEDAHIGHTECHPRODUCTSISSIMULATEDANIMALOLFACTORYORGAN,SCIENTISTSARESTILLNOTALLCLEARPRINCIPLEOFTHEANIMALSSENSEOFSMELLHOWEVER,WITHTHEDEVELOPMENTOFSCIENCEANDTECHNOLOGY,MOREAUTHORITATIVESOMEUNIVERSITIESINTHEWORLDHAVEDEVELOPEDELECTRONICNOSEHASAWIDERANGEOFAPPLICATIONS,MOSTNOTABLYTOTHENUMBEROFTHEUNIVERSITYOFHAMBURG,GERMANY,HASABSOLUTEAUTHORITYINTHESENSORFIELDINTHEWORLDTODAYELECTRONICNOSEISTHERESPONSEPATTERNTOIDENTIFYTHEODOROFTHEGASSENSORARRAYELECTRONICSYSTEMS,ITCANBEINAFEWHOURS,DAYSOREVENAFEWMONTHSTIMEWITHINACONTINUOUS,REALTIMEMONITORINGOFTHESPECIFICLOCATIONOFTHEODORCONDITIONIDENTIFYINGODORMAINMECHANISMOFTHEELECTRONICNOSEISTHATEACHSENSORINTHEARRAYHASADIFFERENTSENSITIVITYOFTHEMEASUREDGASTHECOREOFTHEDEVICEOFTHEELECTRONICNOSEGASSENSORGASSENSORSBASEDONTHEPRINCIPLEOFDIFFERENTTYPEOFMETALOXIDE,ELECTROCHEMICAL,ANDCONDUCTIVEPOLYMERTYPE,QUALITY,PHOTOIONIZATIONTYPECANBEDIVIDEDINTOMANYTYPESCURRENTLYTHEMOSTWIDELYUSEDISAMETALOXIDEHOWITWORKSELECTRONICNOSEISMAINLYCOMPOSEDOFTHREEPARTSOFAGASSENSORARRAY,SIGNALPREPROCESSINGANDPATTERNRECOGNITIONPRESENTEDINFRONTOFANACTIVEMATERIALOFTHESENSOR,ANODORSENSORCHEMICALINPUTISCONVERTEDINTOANELECTRICALSIGNALBYAPLURALITYOFSENSORRESPONSETOANODORTHEYCONSTITUTETHESENSORARRAYTOTHEODOROFTHERESPONSESPECTRUMOBVIOUSLY,THEVARIOUSCHEMICALCOMPONENTSINTHEODORSENSITIVEMATERIALSPLAYAROLEINTHISRESPONSESPECTRUMFORABROADSPECTRUMOFODORRESPONSESPECTRUMTOACHIEVETHEODORQUALITATIVEORQUANTITATIVEANALYSIS,THESENSORSIGNALMUSTBEAPPROPRIATEPRETREATMENTTOELIMINATENOISE,FEATUREEXTRACTION,SIGNALAMPLIFICATION,ETC,USINGASUITABLEPATTERNRECOGNITIONANALYSISMETHODFORPROCESSINGTHEREOFTHEORETICALLY,EACHODORWILLHAVEITSCHARACTERISTICRESPONSESPECTRUM,ACCORDINGTOITSCHARACTERISTICRESPONSESPECTRUMCANDISTINGUISHBETWEENSMALLSAMEODORWHILEGASSENSORSCONSTITUTINGTHEARRAYTOMEASURETHECROSSSENSITIVITYOFAVARIETYOFGASES,BYASUITABLEANALYTICALMETHOD,THEMIXEDGASANALYSISTHEELECTRONICNOSEISTHEUSEOFVARIOUSGASSENSINGDEVICEHASARESPONSETOTHISCHARACTERISTICBUTDIFFERENTFROMEACHOTHER,WITHTHEDATAPROCESSINGMETHODSTOIDENTIFYAVARIETYOFODOR,ODORQUALITYANALYSISANDEVALUATIONOFCOMPLEXCOMPONENTGASESTHEMAINMECHANISMOFTHEELECTRONICNOSEIDENTIFYEACHSENSORINTHEARRAYHASADIFFERENTSENSITIVITYOFTHEMEASUREDGAS,EG,HIGHRESPONSEONEGASMAYBEGENERATEDONASENSOR,WHILETHEOTHERSENSORISALOWRESPONSESIMILARLY,THE2NDGASGENERATINGHIGHRESPONSEOFTHESENSORISNOTSENSITIVEONTHE1STGASAND,ULTIMATELY,THEENTIRESENSORARRAYRESPONSEPATTERNISDIFFERENTFORDIFFERENTGASES,ITISTHISDIFFERENCE,TOENABLETHESYSTEMTOIDENTIFYAGASACCORDINGTOTHERESPONSEOFTHESENSORPATTERNELECTRONICNOSECANBESUMMARIZEDASFOLLOWSTHESENSORARRAYTHESIGNALPREPROCESSINGNEURALNETWORKSANDAVARIETYOFALGORITHMSCOMPUTERIDENTIFICATIONGASQUALITATIVEANDQUANTITATIVEANALYSISFUNCTIONALLYSPEAKING,THEGASSENSORARRAYISEQUIVALENTTOTHEBIOLOGICALOLFACTORYSYSTEMINALARGENUMBEROFOLFACTORYRECEPTORCELLS,NEURALNETWORKANDTHECOMPUTERTORECOGNIZETHEBIOLOGICALEQUIVALENTOFTHEBRAIN,THERESTISTHEEQUIVALENTOFTHEOLFACTORYNERVESIGNALTRANSDUCTIONSYSTEMFOREXAMPLE,THEMEASUREMENTOFTHEMETALOXIDESEMICONDUCTORMOSGASSENSORINRESPONSETOTHESCHEMATICDIAGRAMOFTHEVOLTAGESIGNALMOSGASSENSORISUSUALLYBEFORETHETESTSHALLBEHEATEDTO2500ORHIGHERINORDERTOWORKPROPERLYAFTERTHECHEMICALREACTIONOCCURSINTHETESTINGPROCESS,THEMOSGASSENSORANDTHESAMPLEGAS/ODOR,WILLCHANGEITSOWNGASSENSITIVEFILMCONDUCTIVITYANDRESISTANCEVALUES,LEADINGTOATERMINALVOLTAGEOFASAMPLINGRESISTORINSERIESTHERETOISCHANGEDDUETOSAMPLINGRESISTORISFIXED,SOTHEIMMEDIATEEXTRACTIONOFTHEENDOFTHESAMPLINGRESISTORVOLTAGESIGNALVOLTAGEMOSGASSENSORRESPONSECURVE图1FEATURESELECTRONICNOSERESPONSETIME,SPEEDDETECTION,UNLIKEOTHERINSTRUMENTS,SUCHASTHEGASCHROMATOGRAPHYSENSORS,HIGHPERFORMANCELIQUIDCHROMATOGRAPHYSENSORNEEDCOMPLEXPRETREATMENTPROCESSMEASURINGAWIDERANGEOFASSESSMENT,ITCANDETECTAVARIETYOFDIFFERENTTYPESOFFOODANDTOAVOIDHUMANERROR,GOODREPEATABILITYCANDETECTSOMEOFTHEHUMANNOSECANNOTDETECTTHEGAS,SUCHASPOISONGASORSOMEIRRITANTGASES,WHICHINMANYAREAS,ESPECIALLYINTHEFOODINDUSTRYPLAYSANINCREASINGLYIMPORTANTROLEANDGRAPHICALCOGNITIVEEQUIPMENTTOHELPITSSPECIFICITYGREATLYENHANCETHEDEVELOPMENTOFSENSORMATERIALSALSOCONTRIBUTEDTOTHEIMPROVEMENTOFITSREPETITIVE,ANDWITHTHEIMPROVEMENTOFBIOCHIPS,BIOTECHNOLOGYDEVELOPMENTANDINTEGRATIONTECHNOLOGY,ANDSOMENANOMATERIALSTHEAPPLICATIONOFELECTRONICNOSEWILLHAVEBROADAPPLICATIONPROSPECTSMANYDIFFERENTTYPESOFTHEELECTRONICNOSE,THETYPICALWORKINGPROGRAMTHATIS1SENSORINITIALIZATIONUSINGAVACUUMPUMPTOTHEAIRSAMPLINGLESSONSTOSMALLCONTAINERSFITTEDWITHTHEELECTRONICSENSORARRAYCHAMBER2DETERMINATIONOFTHESAMPLEANDDATAANALYSISSAMPLINGOPERATIONUNITTHEINITIALIZATIONOFTHESENSORARRAYISEXPOSEDTOTHEODORBODY,WHENTHECONTACTWITHTHESURFACEOFTHEACTIVEMATERIALOFTHEVOLATILECOMPOUNDSVOCANDTHESENSORULTRASONICSENSOR,TOPRODUCETHETRANSIENTRESPONSESUCHARESPONSEISRECORDEDANDTRANSMITTEDTOTHESIGNALPROCESSINGUNITFORANALYSIS,ANDSTOREDINTHEDATABASEOFALARGENUMBEROFVOCPATTERNCOMPARISON,IDENTIFICATION,ANDTODETERMINETHETYPEOFODOR3CLEANINGTHESENSORMEASUREDAFTERTHESAMPLEISFINISHED,USEOFALCOHOLVAPOR“FLUSH“THESENSORSURFACEOFTHEACTIVEMATERIAL,THEODORREMOVALMEASUREDBIMIXTUREINENTERNEWMEASUREMENTPRIORTOTHENEXTROUND,THESENSORSTILLIMPLEMENTINITIALIZATIONTHATIS,BETWEENTHEWORKAGAIN,EACHSENSORAREREQUIREDDRYAIRORSOMEOTHERREFERENCEGASCLEANINGTOMEETTHEBENCHMARKSTHEMEASUREDODOREFFECTOFTIMEISCALLEDTHE“RESPONSETIME“ANDTHEPURGEPROCESSANDTHEREFERENCEGASROLEOFTHESENSORARRAYUSEDINTHEINITIALIZATIONPROCESSTIMEISCALLEDTHE“RECOVERYTIME“THEELECTRONICNOSESYSTEMCONSISTSOFTWOPARTSINFORMATIONACQUISITIONTHETERMINALACQUISITIONTERMINALANDINFORMATIONPROCESSINGTERMINALPROCESSINGTERMINAL1COLLECTIONTERMINALISRESPONSIBLEFORCOLLECTINGTHESIGNALVOLTAGEOFTHEMOSGASSENSORARRAYPROCESSINGTERMINALVIAAHANDHELDCOMPUTERPDATOCOMPLETETHEDATAANALYSISANDPROCESSINGTWOTERMINALDATAEXCHANGEDBYTHETWOWIRELESSMODULECOLLECTIONTERMINALCONSISTSOFTHREEMAJORCOMPONENTSSAMPLINGSYSTEMS,ELECTRICALSYSTEMS,ASWELLASTHESENSORARRAYTHESAMPLINGSYSTEMCONSISTSOFTHETHEGASSENSORCAVITY,MICROPLOWPUMPANDTHREEWAYSOLENOIDVALVECIRCUITSYSTEMCONSISTSOFTHEFOLLOWINGFUNCTIONALMODULESANDPOWERTHEMICROCONTROLLER,ADCMODULE,DACCONDITIONINGMODULES,MEMORYMODULES,WIRELESSMODULESANDLITHIUMBATTERYTHESENSORCAVITYISPLACEDWITHTHESENSORARRAYCONSISTINGOFEIGHTCOMMERCIALTGSGASSENSORTHEWORKOFENERGYCONSUMPTIONOFTHEENTIRECOLLECTIONTERMINALIN6WABOUT,INTHECASEOFTHELITHIUMBATTERYWITHACAPACITYOF3800AMHPOWERED,ITISPOSSIBLETOWORKCONTINUOUSLY32HCOLLECTIONSOFTWAREONTHETERMINALISUNDERINKEILUVISION2DEVELOPMENTENVIRONMENTWITHCLANGUAGE,WRITINGGOODSOURCETHROUGHTHERS232SERIALBURNTOSTC89C516KDMICROCONTROLLER2PROCESSINGTERMINALBYAWIRELESSMODULE,MICROCONTROLLER,RS232SERIALPORTTOUSBINTERFACEMODULERS232TOUSB,ANDPDAWIRELESSMODULEWITHMICROCONTROLLERINTERFACEDESIGNCIRCUITWITHTHECOLLECTIONTERMINALBECAUSEONPDAUSBINTERFACE,ITISNECESSARYTODESIGNRS232SERIALTOUSBINTERFACECIRCUITTOCOMPLETETHEEXCHANGEOFDATABETWEENTHEMCUANDPDASTHEELECTRONICNOSESYSTEMSOFTWAREISDIVIDEDINTOTWOPARTSTHESOFTWAREISBASEDONPROCESSINGTERMINALLABVIEW71NATIONALINSTRUMENTATION,USAPLATFORMDEVELOPEDONAPDAWINDOWSXPSYSTEMELECTRONICNOSEINACOMPLETETESTPROCESS,HAVETOGOTHROUGHFOURSTAGESGROUNDSTATEPHASESAMPLINGSTAGE,HOLDINGPHASEANDTHERECOVERYPHASESTAGEINTHEBASESTATE,THETHREEWAYSOLENOIDVALVEISSWITCHEDTOTHEAIRPASSAGE,ANDAVOLTAGESIGNALOFTHESENSORARRAYTOAHORIZONTALBASELINETOBEATHREEWAYSOLENOIDVALVEISSWITCHEDTOTHESAMPLEGASCHANNELINTOTHESAMPLINGSTAGE,THESENSORARRAYRESPONSE,AFEWSECONDSAFTERTHEVOLTAGESIGNALVALUEROSETOAPEAKANDTHENSTABILIZED,TOBECLOSETOEQUILIBRIUM,THESYSTEMENTERSTHEHOLDINGPHASE,THREEWAYSOLENOIDVALVEREMAINSCONSTANTSAMPLEGASCHANNELTHELASTTOENTERTHERECOVERYPHASE,THREEWAYSOLENOIDVALVEISSWITCHEDBACKTOTHEAIRCHANNEL,RAPIDDECLINEINTHERESPONSECURVEOFTHESENSORARRAY,UNTILITISRESTOREDTOTHEBASELINEPOSITIONTHETIMEVALUEOFTHEFOURSTAGESOFTHETESTINGPROCESSBEFORETHESTARTOFTHETEST,YOUMUSTFIRSTSETONAPDATHEGROUNDSTATETIME,SAMPLINGTIME,HOLDTIMEANDRECOVERYTIMETHEN“START“COMMAND,THESYSTEMBEGANTOTESTISSUEDBYTHEPDACOLLECTIONTERMINALAFTERRECEIVINGTHEORDER,THEINTERNALMICROCONTROLLERINACCORDANCEWITHTHEINSTRUCTIONS,TIMERTOCONTROLTHETIMEOFTHEFOURSTAGESFIRST,THEMICROCONTROLLERWILLCONTROLTHEHEATINGVOLTAGEOFDACCONDITIONINGMODULEOUTPUTISUSEDTOHEATTHESENSORARRAY,ANDTHENCONTROLTHESIGNALVOLTAGEOFTHEADCMODULEACQUISITIONSENSORARRAYANDCHOOSETOGETTHEDATASAVEDTOTHEMEMORYMODULE,ORDIRECTLYTOTHERECEIVERBYTHEWIRELESSMODULEFEEDBACKPDATODOTHEANALYSISANDPROCESSINGAFTERTHEDATAACQUISITIONISCOMPLETED,PDASENDS“END“COMMAND,THESYSTEMSTOPSWORKINGDURINGTHENEXTROUNDOFTESTINGISREQUIREDBEFORETHEPDAISSUEA“RESET“COMMANDTOMAKETHESYSTEMCLEAREDBEFOREANEWROUNDOFTESTSINADDITION,INTHEPROCESSOFTESTING,YOUCANISSUECOMMANDSTHROUGHTHEPDAMINIATUREAIRPUMPANDTHREEWAYELECTRONICVALVECONTROLSWITCHAFTERTHETESTISSTOPPED,THEDATAOFTHESENSORARRAYCANBEREADTHROUGHTHE“OPEN“INSTRUCTIONTOOBTAINBEFOREANDRESPONSECURVESSTATISTICALMETHODSPRINCIPALCOMPONENTANALYSISPCAPRINCIPALCOMPONENTANALYSISREFERSTOSEVERALVARIABLESBYLINEARTRANSFORMATIONTOELECTAFEWERNUMBEROFIMPORTANTVARIABLESOFMULTIVARIATESTATISTICALANALYSISMETHOD,ALSOKNOWNASPRINCIPALCOMPONENTANALYSISITISASTATISTICALANALYSISMETHODTOGRASPTHEPRINCIPALCONTRADICTIONOFTHINGS,YOUCANPARSEOUTTHEMAININFLUENCINGFACTORSFROMDIVERSETHINGS,TOREVEALTHENATUREOFTHINGS,SIMPLIFYCOMPLEXPROBLEMSPCAASALINEARFEATUREEXTRACTIONTECHNOLOGY,DESIGNEDTOEXPLOITDATADIMENSIONALITYREDUCTIONIDEATHATTHECALCULATIONOFTHEMAINCOMPONENTSANDHIGHDIMENSIONALDATAISPROJECTEDONTOALOWERDIMENSIONALSPACE,MULTIINDICATORSINTOAFEWINDICATORS,SOASMUCHASPOSSIBLETOSHOWTHEINFORMATIONCONTAINEDINTHEORIGINALDATAPCAINELECTRONICNOSESFORANOBJECTIVEANALYSISOFTHEDIFFERENCESBETWEENTHESAMPLESCLUSTERANALYSISCACLUSTERANALYSISISAKINDOFSUBJECTSWEREDIVIDEDINTORELATIVELYHOMOGENEOUSGROUPSOFSTATISTICALANALYSISTECHNIQUESFROMASTATISTICALPOINTOFVIEW,THECLUSTERANALYSISISAWAYTOSIMPLIFYTHEDATATHROUGHDATAMODELINGCAISCLASSIFIEDBASEDONTHERELATIONSHIPBETWEENTHENUMBEROFTHEINDIVIDUALORVARIABLETHEOBJECTIVITYSTRONG,BUTVARIOUSCLUSTERINGMETHODSCANONLYBEACHIEVEDUNDERCERTAINCONDITIONSTHELOCALOPTIMUMWHETHERTHEFINALRESULTOFTHECLUSTERINGTOSETUP,TAKEIDENTIFICATIONOFEXPERTSDISCRIMINANTFACTORANALYSISDFATHEJUDGMENTFACTORANALYSISISASTATISTICALMETHODTODETERMINETHEINDIVIDUALCATEGORYOBSERVATIONSACCORDINGTOTHEKNOWNCLASSESOFTWOORMORESAMPLESTODETERMINEONEORMORELINEARDISCRIMINANTFUNCTIONDISCRIMINANTINDEX,THENANOTHERBODYTODETERMINEWHICHCATEGORYTHEDISCRIMINANTFUNCTIONBASEDONDISCRIMINATIONINDEXDFAACCORDINGTOTHERESULTSOFTHESTANDARDSAMPLEUSEDFORELECTRONICNOSESTOIDENTIFYBLINDBYRECOMBINATIONOFSENSORDATATOOPTIMIZETHEDIFFERENTIATED,ORTHROUGHTHESENSOROPTIMIZEDSELECTION,IEREMOVALOFTHESENSOR,NOCONTRIBUTIONORASMALLCONTRIBUTIONTOIMPROVETHERECOGNITIONCAPABILITY,ITSPURPOSEISTOBRINGTHEGROUPDISTANCEBETWEENTHEDIFFERENCEWITHINAMAXIMUMWHILEENSURINGGROUPMINIMUMARTIFICIALNEURALNETWORKANNTHEARTIFICIALNEURALNETWORKISABYIMITATEHUMANORANIMALNEURALNETWORKBEHAVIORALCHARACTERISTICS,MATHEMATICALMODELOFDISTRIBUTEDPARALLELINFORMATIONPROCESSINGTHISNETWORKRELIESONASYSTEMOFCOMPLEXPROCEDURES,BYADJUSTINGTHETHEINTERNALLARGENUMBEROFINTERCONNECTEDRELATIONSHIPSBETWEENNODES,SOASTOACHIEVETHEPURPOSEOFPROCESSINGINFORMATIONANNPROVIDEDINADVANCEANUMBEROFMUTUALLYCORRESPONDINGINPUTDATAOUTPUTDATA,ANALYSIS,GRASPTHEPOTENTIALBETWEENTHELAW,ANDULTIMATELYWITHANEW“INPUTDATA“ACCORDINGTOTHESELAWS,TODERIVEOUTPUT,THISTHELEARNINGPROCESSOFANALYSISISCALLED“TRAINING“THEAFOREMENTIONEDMETHODS,ANNISUSUALLYCONSIDEREDTOBEAPROMISINGAPPROACH,ANDITSFEATURESANDBENEFITSMAINLYINTHREEASPECTSWITHSELFLEARNINGANDADAPTIVEFUNCTIONASSOCIATIVEMEMORYFUNCTIONWITHHIGHSPEEDTOFINDTHEOPTIMALSOLUTIONCAPACITYINADDITION,ITISABLETOSOLVENONLINEARPROBLEMSBETTERTHANTHETRADITIONALSTATISTICALMETHODSINDEALINGWITHNOISEANDDRIFTCURRENTLY,MANYARTIFICIALNEURALNETWORKISUSEDFORPROCESSINGTHESIGNALOFTHESENSORARRAY,SUCHASBPNEURALNETWORK,RADIALBASISNEURALNETWORKS,FUZZYNEURALNETWORKS,SELFORGANIZINGNETWORK图2RESEARCHPROGRESSIN1964,WILKENSANDHATMANUSEOFGASONTHEELECTRODE,THEOXIDATIONREDUCTIONREACTIONOLFACTORYPROCESSELECTRONICANALOG,WHICHISTHEEARLIESTREPORTSONTHEELECTRONICNOSE1965,BUCKETALTHEUSEOFCHANGESINTHECONDUCTANCEOFAMETALANDASEMICONDUCTORGASMEASUREMENT,DRAVIEKSTHENUSINGTHECHANGEINCONTACTPOTENTIALMEASUREMENTSOFTHEGASHOWEVER,ASTHEGASCLASSIFICATIONWITHTHECONCEPTOFINTELLIGENTCHEMICALSENSORARRAYSUNTIL1982BYTHEUNIVERSITYOFWARWICK,UKPERSUADETAL,THEIRELECTRONICNOSESYSTEMCONSISTSOFTWOPARTSOFTHEGASSENSORARRAYANDPATTERNRECOGNITIONSYSTEMTHESENSORARRAYPARTOFTHEMOUNTAINTHREESEMICONDUCTORGASSENSORTHISSIMPLESYSTEMCANDISTINGUISHBETWEENTHEBRAIN,ACCORDINGTOTHETREEROSEOIL,CLOVEOIL,VOLATILECHEMICALSUBSTANCESFORDENTALODORINTHENEXTFIVEYEARS,THEELECTRONICNOSERESEARCHANDDIDNOTCAUSEEXTENSIVEATTENTIONINTHEINTERNATIONALACADEMICCOMMUNITY1987,HELDATTHEUNIVERSITYOFWARWICK,UK8THANNUALMEETINGOFTHEEUROPEANCHEMICALSENSINGRESEARCHORGANIZATIONISTHETURNINGPOINTOFTHESTUDYOFTHEELECTRONICNOSEATTHISMEETING,GARDNERLEDBYTHEUNIVERSITYOFWARWICKINGASSENSINGSENSINGRESEARCHTEAMPUBLISHEDAPAPERSENSORINGASMEASUREMENTPARTIESANDAPPLICATIONS,FOCUSINGONTHECONCEPTOFPATTERNRECOGNITION,CAUSEDACADEMIAEXTENSIVEINTERESTIN1989,THENORTHATLANTICTREATYORGANIZATIONHELDASPECIALCHEMICALSENSORINFORMATIONPROCESSINGSYMPOSIUM,DEDICATEDTOARTIFICIALOLFACTORYSYSTEMDESIGNOFTHESETWOTOPICSINAUGUST1991,THENORTHATLANTICTREATYORGANIZATIONWASHELDINICELANDTHEMATICSESSIONSOFTHEFIRSTELECTRONICNOSETHEELECTRONICNOSESINCETHENRAPIDDEVELOPMENT1994,GARDNEAREVIEWARTICLEONTHEELECTRONICNOSE,FORMALLYPROPOSEDTHECONCEPTOF“ELECTRONICNOSE“,MARKINGTHEELECTRONICNOSETECHNOLOGYINTOTHEMATURESTAGEOFDEVELOPMENTSINCE1994,AFTERMORETHANTENYEARSOFDEVELOPMENT,THEELECTRONICNOSERESEARCHHASMADERAPIDPROGRESSFORTHESTUDYOFTHEELECTRONICNOSEMAINLYINTHESIDEOFTHESENSORANDELECTRONICNOSEHARDWAREDESIGN,PATTERNRECOGNITIONTHEORY,THEELECTRONICNOSEINFOOD,AGRICULTURE,PHARMACEUTICAL,BIOFIELDAPPLICATIONS,ELECTRONICNOSE,ANDBIOLOGICALSYSTEMSWHILETHEHARDWAREDESIGNOFTHESENSORANDTHEELECTRONICNOSEANDELECTRONICNOSEAPPLICATIONSINTHEFIELDOFFOODANDAGRICULTUREISAHOTSPOTINTHESTUDYOFTHEELECTRONICNOSECREWETOWNINCHESHIRE,ENGLANDCOMPANYSUCCESSFULLYDEVELOPEDANELECTRONICNOSE,THETESTSSHOWEDTHATTHEPATIENTSKINWOUNDBACTERIACAN“SNIFF“OUTTHEEROSIONREMINDDOCTORSTOTAKEAPPROPRIATEMEASURESINATIMELYMANNERHISSTUDYOFTHEELECTRONICNOSEISAMATRIXCOMPOSEDOF32DIFFERENTORGANICPOLYMERSENSOR,VERYSENSITIVETOTHESMELLOFVARIOUSVOLATILECOMPOUND,THECOMPOUNDISDIFFERENT,THEREACTIONISDIFFERENTTYPICALLY,BACTERIALGROWTHWILLBEISSUEDCHEMICALODORTHEELECTRONICNOSECONTACTWITHTHEODOR,EACHSENSORRESISTANCEWILLCHANGE“FORMAT“SINCEEACHSENSORCORRESPONDINGTOADIFFERENTKINDOFCHEMICALSUBSTANCES,COMPOSEDOF32KINDSOFTHESAMECHANGEINRESISTANCEWOULDRESPECTIVELYREPRESENTTHE“FINGERPRINT“OFTHEDIFFERENTODORSTHETESTSSHOWEDTHATTHEELECTRONICNOSECANBEFOUNDIFTHEREISTHEPRESENCEOFBACTERIAONLYNEEDAFEWHOURSINTHEPAST,USINGTHEMETHODSOFTHELABORATORYTESTS,USUALLY13DAYSTOGETTHERESULTSTHEGASSENSORSINTHESYSTEMOFELECTRONICNOSE,THEGASSENSORISTHEPERCEIVEDODOROFTHEBASICUNIT,AREALSOKEYFACTORSHOWEVER,DUETOTHESTRONGSPECIFICITYOFTHEGASSENSOR,WHICHMAKESTHEDETECTIONOFTHEGASMIXTUREORTHEPRESENCEOFINTERFERINGGASES,THESINGLESENSORISDIFFICULTTOOBTAINAHIGHERACCURACYOFDETECTIONANDIDENTIFICATIONOFTHEREFORE,THEPORTIONOFTHEODORPERCEPTIONOFTHEELECTRONICNOSEOFTENUSEAPLURALITYOFAGASSENSORHAVINGADIFFERENTSELECTIVITY,ACCORDINGTOACERTAINARRAYCOMBINATION,THEUSEOFTHECROSSSENSITIVITYOFAVARIETYOFGASES,THEDIFFERENTODORMOLECULESINITSROLEOFTHESURFACEISCONVERTEDTOACONVENIENTCALCULATETHETIMERELATEDPHYSICALSIGNALGROUP,CANBEMEASUREDTOACHIEVETHEANALYSISOFTHEMIXEDGASATPRESENT,THEMAINTYPESOFELECTRONICNOSESENSORSCONDUCTIVESENSORS,PIEZOSENSORS,FIELDEFFECTSENSORS,FIBEROPTICSENSORS,VARIOUSSENSORSHAVETHEIROWNADVANTAGESANDDISADVANTAGES,THEELECTRONICNOSECANADAPTTOAVARIETYOFUSES图3APPLICATIONANDPROSPECTSFOODELECTRONICNOSEWIDERANGEOFAPPLICATIONSINTHEFIELDOFFOOD,INCLUDINGGRAINS,FRUITS,DAIRYPRODUCTS,MEAT,ALCOHOLANDTOBACCOWITHADISTINCTODORCHARACTERISTICSOFTHEFOODWITHTHEGROWINGDEPTHOFTHEELECTRONICNOSERESEARCH,HASBEENINVOLVEDINMANYASPECTSOFFOODSCIENCEACCORDINGTODIFFERENTAPPLICATIONPURPOSEANDFUNCTIONOFTHEELECTRONICNOSE,ELECTRONICNOSEINFOODRESEARCHCANBEDIVIDEDINTOTHEMONITORINGOFTHEPRODUCTIONPROCESS,THEFRESHNESSOFTHEASSESSMENT,THESHELFLIFEOFTHESURVEY,TRUEANDFALSEVERIFICATION,ANDOTHERASPECTSTHEMOSTIMPORTANTTHINGISTHATTHEQUALITYCONTROLOFDAIRYPRODUCTSINTHEPRODUCTIONPROCESSINITSMONITORINGOFTHEQUALITYANALYSISOFVOLATILECOMPONENTSOFMILKHASBECOMEONEOFTHEMOSTPOTENTIALMEANSTOOBTAINMILKINFORMATIONANDTODISTINGUISHTHEDIFFERENTKINDSOFMILK,ISMAINLYUSEDFORMONITORINGOFDIFFERENTHEATTREATMENTPROCESSTHEELECTRONICNOSEINTHEDAIRYPROCESSINGHASBEENWIDELYUSED,FOREXAMPLE,THETHEDANISHGREENCHEESEMATURITYPROCESSMONITORING,QUALITYCONTROLOFSWISSCHEESEFLAVORMIXTUREPATTERNRECOGNITIONANDCHEESETASTEDETECTION,ANDDETECTIONOFTHESHELFLIFEOFCHEESE,CHEESE,ANOTHERINCLUDETHEDETECTIONOFMICROORGANISMSINMILKDISTINGUISHDIFFERENTKINDOFICECREAM,ONLINEMONITORINGOFYOGHURTFERMENTATION2001,ITALYSCAPONEANDOTHERELECTRONICNOSETOIDENTIFYTWODIFFERENTHEATTREATMENTOFMILKONEISPASTEURIZED,ANOTHERTREATEDAFTERULTRAHIGHTEMPERATURESTERILIZATIONTHEFIVEDIFFERENTSNO2SENSORARRAY,INRESPONSETOTHEDATAOBTAINEDBYTHESOLGELTECHNOLOGYTOIDENTIFYTHETWOKINDSOFMILKPROCESSINGANDTRACKINGTHEDYNAMICPROCESSOFMILKCORRUPTIONREACTORBYPRINCIPALCOMPONENTANALYSIS,BEABLETOTELLITSGOODQUALITYTHEBADANDTHEWHOLECORRUPTPROCESS,ANDINTHEDAIRYPRODUCTIONINDUSTRYHASBEGUNTOAPPLYTHISINSTRUMENTTOGOFORQUALITYCONTROLANALYSISTHEEXPERIMENT,THESENSORHASAGOODREPEATABILITY,ANDTHERESPONSETIMEISVERYSHORT,ABOUT23MINTHEELECTRONICNOSEAPPLICATIONSINDAIRYBIGGESTADVANTAGEISTHATYOUCANLINECONTROL,WHICHCANNOTBECOMPAREDTOANYOTHERMETHODAMERICANSPANIGRAHIUSINGACOMMERCIALELECTRONICNOSESYSTEM,BASEDONTHECONDUCTIVEPOLYMERUSEDFORTHEANALYSISOFBEEFFRESHNESSRAWDATAOBTAINEDBYTHEELECTRONICNOSESYSTEMSUSINGDIFFERENTSIGNALPROCESSINGTECHNIQUESPRETREATMENT,PRETREATMENTDATAREPROCESSINGTOEXTRACTTHECHARACTERISTICSOFTHEDIFFERENTREGIONS,FOLLOWEDBYTHEUSEOFPRI
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年网络相关知识题库及答案
- nr考试复习试题及答案
- 2025年电厂保洁试题及答案
- 深度研究2025年教育行业招生策略变革:数字化营销与品牌建设策略报告
- 2025货车租用合同样本
- 2025年职责培训试卷及答案
- 电焊工考试试题及答案
- 教师招聘之《小学教师招聘》通关训练试卷详解(夺冠系列)附答案详解
- 2025年取制样员考试试题及答案
- 2025项目承包合同范本
- 草木染色的工艺及步骤
- 网络传播概论(彭兰第5版) 课件全套 第1-8章 网络媒介的演变-网络传播中的“数字鸿沟”
- 蚂蚁搬家游戏活动方案设计
- 配电终端功能构造
- 融资风险评估报告
- 画法几何及土木工程制图课件
- 第2课 树立科学的世界观《哲学与人生》(高教版2023基础模块)
- 2023免拆底模钢筋桁架楼承板图集
- 云计算技术基础应用教程(HCIA-Cloud)PPT完整全套教学课件
- 成人学士学位英语1000个高频必考词汇汇总
- 全屋定制家居橱柜衣柜整装安装服务规范
评论
0/150
提交评论