文档简介
工学硕士学位论文纹理物体缺陷的视觉检测算法研究DEVELOPMENTOFAVISUALINSPECTIONALGORITHMTODETECTDEFECTFORTEXTURALOBJECT吴晶晶哈尔滨工业大学2008年12月国内图书分类号TP7511国际图书分类号620工学硕士学位论文纹理物体缺陷的视觉检测算法研究硕士研究生吴晶晶导师李泽湘教授副导师邓江汶博士申请学位工学硕士学科、专业控制科学与工程所在单位深圳研究生院答辩日期2008年12月授予学位单位哈尔滨工业大学CLASSIFIEDINDEXTP7511UDC620DISSERTATIONFORTHEMASTERDEGREEOFENGINEERINGDEVELOPMENTOFAVISUALINSPECTIONALGORITHMTODETECTDEFECTFORTEXTURALOBJECTCANDIDATEJINGJINGWUSUPERVISORCOSUPERVISORPROFZEXIANGLIDRJIANGWENDENGACADEMICDEGREEAPPLIEDFORMASTEROFENGINEERINGSPECIALTYCONTROLSCIENCEANDENGINEERINGAFFILIATIONSHENZHENGRADUATESCHOOLDATEOFDEFENCEDECEMBER,2008DEGREECONFERRINGINSTITUTIONHARBININSTITUTEOFTECHNOLOGYI摘要在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检测技术相比,自动化的视觉检测系统更加经济、快捷、高效与安全。纹理物体在工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代化电子系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化检测提供高效而可靠的检测算法。纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体的检测也可取得不错的效果。在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列具有实际应用价值的图像。实验结果表明本文提出的纹理物体缺陷检测算法具有高效性和易于实现性。关键字缺陷检测;纹理;物体变形;可调控金字塔;重构IIABSTRACTMACHINEVISIONPLAYSANIMPORTANTROLEINQUALITYCONTROLTASKSFORTODAYSHIGHLYCOMPETITIVEAUTOMATICMANUFACTURINGINTERMSOFDEFECTDETECTIONAPPLICATIONS,ANAUTOMATEDVISUALINSPECTIONSYSTEMISSUPERIORTOCONVENTIONALINSPECTIONTECHNIQUESINMANYASPECTS,SUCHASECONOMY,CONVENIENCE,HIGHEFFICIENCYANDSAFETYETCINTHISTHESIS,WEMAINLYCONCERNABOUTTHEDEFECTDETECTIONPROBLEMSFORTEXTURALOBJECTS,WHICHCANBEFOUNDINMANYINDUSTRIALINSPECTIONAPPLICATIONSLIKESUBSTRATEBOARDSANDLIGHTEMITTINGDIODESLEDSFORSEMICONDUCTORASSEMBLYANDPACKAGINGPROCESSES,PRINTEDCIRCUITBOARDSPCBSANDTEXTUREDMATERIALSASANIMPORTANTCHARACTERISTICFORTHEANALYSISOFIMAGES,TEXTUREHASBEENSUCCESSFULLYUTILIZEDFORAVARIETYOFMACHINEVISIONAPPLICATIONS,SUCHASTEXTURESEGMENTATION,TEXTURECLASSIFICATIONANDETCINTHISSTUDY,WEPRESENTANEWIMAGEREFERENCEAPPROACHFORINDUSTRIALINSPECTIONAPPLICATIONSTHEPROPOSEDMETHODDOESNOTREQUIREACCURATEIMAGEREGISTRATIONANDISROBUSTTOTHEINFLUENCEOFTEXTURESUNLIKEOTHERTEXTUREANALYSISTECHNIQUES,THEPROPOSEDMETHODPROVIDESUSEFULPHYSICALINFORMATIONFORTHECHARACTERISTICSOFDEFECTSDURINGTHEINSPECTIONPROCESS,WEADOPTANEFFICIENTWAVELETTEXTUREANALYSISTECHNIQUEOFSTEERABLEPYRAMIDANDITSRECONSTRUCTIONSCHEMEATOLERANCECONTROLALGORITHMFORHANDLINGOBJECTDISTORTIONANDTEXTURESINWAVELETDOMAINISINTRODUCEDAFTERCOMBINATIONOFTHEDIFFERENCESUBIMAGESINEACHDECOMPOSITIONLEVELFORBACKWARDSTEERABLEPYRAMID,DETECTIONRESULTSAREFINALLYOBTAINEDEXPERIMENTALRESULTSFROMASSEMBLEDSUBSTRATEBOARDSFORSEMICONDUCTORPACKAGE,PCB,LEDANDTEXTUREDMATERIALSAREAVAILABLEHAVEDEMONSTRATEDTHATTHEPROPOSEDMETHODISEASYTOIMPLEMENTANDVERYEFFECTIVEKEYWORDSDEFECTDETECTION,TEXTURE,OBJECTDISTORTION,STEERABLEPYRAMID,RECONSTRUCTIONIIIACKNOWLEDGEMENTSIWISHTOACKNOWLEDGEASMASSEMBLYAUTOMATIONLTDFORSPONSORINGTHEWHOLEWORKTHEN,IWOULDLIKETOEXPRESSMYSINCEREGRATITUDETOMYADVISORS,PROFZEXIANGLIANDDRJIANGWENDENG,FORTHEIRNUMEROUSENCOURAGEMENTS,GUIDANCE,ANDMANYVALUABLEDISCUSSIONSDURINGTHEWRITINGOFTHISDISSERTATIONANDTHERESEARCHIAMESPECIALLYGRATEFULTOMYFRIENDSHAIXIAMENGANDJUNZHANGFORBEINGAGREATHELPINGHANDTHROUGHOUTTHEPROJECTFINALLY,IWOULDLIKETOTHANKMYFAMILYANDTHEFRIENDSWHOCAREANDSUPPORTMEALLTHETIMEIVCONTENTSPAGELISTOFTABLESVILISTOFFIGURESVII1INTRODUCTION111BACKGROUND112MOTIVATION513RESEARCHCONTENT614THESISORGANIZATION62TEXTUREANALYSISTECHNIQUES721TEXTUREANALYSIS722STATISTICALMETHOD923MODELBASEDMETHOD1024SPECTRALMETHOD1125DEFECTDETECTIONUSINGTEXTUREANALYSISTECHNIQUES133WAVELETTRANSFORMFORINSPECTION1531TWODIMENSIONALWAVELETTRANSFORM1532WAVELETIMAGEDECOMPOSITIONANDRECONSTRUCTION1733DEFECTDETECTIONUSINGWAVELETTRANSFORM1834IMAGESUBTRACTIONUSINGWAVELETTRANSFORM204DEFECTDETECTIONFORTEXTURALOBJECT2241ALGORITHMDESCRIPTION2242THESTEERABLEPYRAMID2443TOLERANCECONTROLALGORITHM29V44EXPERIMENTALRESULTSANDDISCUSSION325GRAPHICUSERINTERFACEDESIGN4151INTRODUCTIONTOGUI4152GUIDESIGNFORTEXTURALOBJECTINSPECTIONSYSTEM4353GUIIMPLEMENTATIONFORTEXTURALOBJECTINSPECTIONSYSTEM46CONCLUSION52REFERENCES53VILISTOFTABLESTABLEPAGETABLE41PROPERTIESOFTHESTEERABLEPYRAMIDCOMPAREDTODYADICWAVELET29TABLE42THEDETAILEDDESCRIPTIONOFTOLERANCECONTROLALGORITHM31VIILISTOFFIGURESFIGUREPAGEFIGURE11AUTOMATEDVISUALINSPECTIONSYSTEM2FIGURE21THEINTERPRETATIONOFTEXTURES8FIGURE22BASICFLOWFORDEFECTDETECTIONBYUSINGTEXTUREANALYSISTECHNIQUES13FIGURE31SYSTEMDIAGRAMOFWAVELETTRANSFORM17FIGURE32BASICFLOWOFTEXTUREDEFECTDETECTIONUSINGWAVELETTRANSFORM19FIGURE41OVERALLBLOCKDIAGRAMOFTHEPROPOSEDALGORITHM23FIGURE42REFERENCEINFORMATIONEXTRACTEDFROMTHEREFERENCEIMAGE24FIGURE43SYSTEMDIAGRAMOFSTEERABLEPYRAMID25FIGURE44STRUCTUREOFSTEERABLEPYRAMID26FIGURE45SPECTRALDECOMPOSITIONOFSTEERABLEPYRAMID27FIGURE46THEEFFECTOFSPACEPATTERNINSPECTION32FIGURE47THEEFFECTOFMINUTEDEFECTINSPECTION34FIGURE48THEEFFECTOFDECOMPOSITIONLEVELSFORP1435FIGURE49THEEFFECTOFDECOMPOSITIONLEVELSFORP3636FIGURE410LEDINSPECTION137FIGURE411LEDINSPECTION238FIGURE412PCBINSPECTION138FIGURE413PCBINSPECTION239FIGURE414TEXTUREINSPECTION140FIGURE415TEXTUREINSPECTION240FIGURE51THEPROCESSOFGUIDESIGN43FIGURE52MAINFLOWOFGUIDESIGNFORTEXTURALOBJECTINSPECTIONSYSTEM44VIIIFIGURE53MENUEDITOR45FIGURE54GUICOMPONENTSASSIGNMENTEDITING45FIGURE55THEMAININTERFACEOFGUI47FIGURE56LOADINPUTIMAGESANDIMAGENORMALIZATION48FIGURE57DEFECTDETECTIONRESULTSDISPLAY48FIGURE58THEINTERFACEFORIMAGECOMPARISONDETAILSDISPLAY49FIGURE59HIGHPASSBANDCOEFFICIENTIMAGES49FIGURE5103SCALEAND4ORIENTATIONLOWPASSBANDCOEFFICIENTIMAGES50FIGURE5112SCALEBANDPASSCOEFFICIENTIMAGESINORIENTATIONOFZERO50FIGURE5122SCALEBANDPASSCOEFFICIENTIMAGESINORIENTATIONOF/4P51CHAPTER1INTRODUCTION1CHAPTER1INTRODUCTION11BACKGROUNDQUALITYCONTROLISDESIGNEDTOENSURETHATDEFECTIVEPRODUCTSARENOTALLOWEDTOREACHTHECUSTOMERFORTHISREASON,QUALITYCONTROLACTIVITIESFORMANESSENTIALINFORMATIONFEEDBACKLOOPFORTHEWHOLEBUSINESS,WITHPOTENTIALINFLUENCEONTHEDESIGN,PROCESSPLANNINGANDLOGISTICSFUNCTIONSASWELLASONMANUFACTURING1THEGLOBALECONOMICPRESSURESHAVEGRADUALLYLEDBUSINESSESTOASKMOREOFTECHNICALINNOVATIONINORDERTOBECOMEMORECOMPETITIVEANDDOBETTERINQUALITYCONTROLOBVIOUSLY,MANUALINSPECTORSLOWSDOWNTHEENTIREQUALITYCONTROLPROCESSASITBECOMESCOSTLY,TIMECONSUMINGANDALSOMAYIMPACTTHEEFFECTIVENESSOFHUMANLABORDUETOTHEHAZARDOUSATMOSPHEREOFINDUSTRYHOWEVER,WITHTHEDEVELOPMENTOFCOMPUTERSCIENCEANDTECHNOLOGY,THEAPPLICATIONOFMACHINEVISIONSYSTEMSFORTHEAUTOMATIONOFQUALITYCONTROLTASKSHASBECOMEQUITEPOPULARINTHEASPECTOFDEFECTDETECTIONAPPLICATIONS,ANAUTOMATEDVISUALINSPECTIONSYSTEMISEXPECTEDTOPROVIDEASOLUTIONWITHRELIABLEANDEFFECTIVEPERFORMANCEAUTOMATEDVISUALINSPECTIONTHETERMINSPECTIONIMPLIESAPROCEDUREOFDETERMININGWHETHERTHEPRODUCTHASDEVIATEDFROMAGIVENSETOFSPECIFICATIONSVISUALINSPECTIONISCOMMONLYDEFINEDAS“THEEXAMINATIONOFAMATERIAL,COMPONENT,ORPRODUCTFORCONDITIONSOFNONCONFORMANCEUSINGLIGHTANDTHEEYES,ALONEORINCONJUNCTIONWITHVARIOUSAIDS”VISUALINSPECTIONSYSTEMINTHISTHESISISRELATEDBYUSINGVISIBLELIGHT,ALTHOUGHITCANCHAPTER1INTRODUCTION2BECARRIEDOUTBYUSINGOTHERFORMSOFRADIATIONLIKEULTRASOUND,ULTRAVIOLET,INFRAREDANDXRAYVISUALINSPECTIONSYSTEMCANBEDESCRIBEDASTHEINTEGRATIONOFIMAGEACQUISITIONDEVICES,COMPUTERS,ANDIMAGINGSOFTWARETHEAUTOMATEDMANUFACTURINGALSOREQUIRESAPPLICATIONSPECIFICMATERIALHANDLING,MOTIONCONTROLLERS,PARTTRACKINGCONTROLLERSANDSENSORS,ANDCONTROLSOFTWARE2FIGURE11SHOWSANEXAMPLEOFAUTOMATEDVISUALINSPECTIONSYSTEM2FIGURE11AUTOMATEDVISUALINSPECTIONSYSTEMIMAGEACQUISITIONDEVICESLIGHTINGTOILLUMINATETHEOBJECT,OPTICS/LENSTOCOUPLETHEIMAGETOACAMERASENSOR,ACAMERATOCONVERTOPTICALIMAGETOANANALOGSIGNAL,ANDFORAUTOMATEDMANUFACTURINGATRIGGERSENSORTOINITIATETHEIMAGEACQUISITIONCOMPUTERTYPICALLYAPCWITHACPUDECISIONMAKINGANDCONTROL,ANOPERATORCONSOLETHEOPERATORINTERFACE,ANDIMAGINGHARDWARETYPICALLYANANALOGTODIGITALCONVERTERANDIMAGEPROCESSINGTHEAUTOMATEDMANUFACTURINGALSOREQUIRESANADDITIONOFI/OINTERFACE,MATERIALHANDLINGANDCOMMUNICATIONSTOCUSTOMERPROCESSINFORMATIONANDCONTROLSYSTEMSOFTWAREMODEMNETWORKOPERATORCONSOLEI/OINTERFACECOMPUTERIMAGINGELECTRONICSIMAGINGELECTRONICSCAMERACAMERALIGHTINGLIGHTINGLENSLENSMATERIALHANDLINGCHAPTER1INTRODUCTION3SOFTWAREOPERATINGSYSTEMSOFTWAREEGWINDOWSNT/2000/XPANDIMAGINGSOFTWARETHEUSERINTERFACE,IMAGEACQUISITIONANDPROCESSING,IMAGEANALYSISANDDECISIONMAKING,HISTORICALDATACOLLECTIONANDANALYSISTODAYSHIGHSPEED,COMPLEXMANUFACTURINGSYSTEMSREQUIREAVISUALINSPECTIONSYSTEMTOHAVETWOOBJECTIVESONEISQUALITYCONTROLTHEOTHERISFORMONITORINGTHEPRODUCTIONPROCESSWITHTHEADVANCEMENTOFTECHNICALINNOVATION,MOREANDMOREBENEFITSBECAMEAPPARENTTHEAUTOMATEDVISUALINSPECTIONSYSTEMCANBEDESIGNEDTOHAVETHEFOLLOWINGADVANTAGES1LOWERCOST2HIGHERSPEED3QUALITYASSURANCE4ACCURACYANDRELIABILITY5IMPROVEDSAFETYHOWEVER,AUTOMATEDVISUALINSPECTIONSYSTEMSALSOHAVELIMITATIONS3FIRSTLY,THEDESIGNANDINSTALLATIONISAVERYCOMPLEXPROBLEMANDREQUIRESTECHNICALEXPERTISEINTHEAREASOFILLUMINATION,CAMERAS,NETWORKING,PATTERNRECOGNITIONANDPROGRAMMINGANOTHERISTHECURRENTLYAVAILABLEAUTOMATEDVISUALINSPECTIONSYSTEMSARECUSTOMERORIENTEDFORASPECIFICTASKANDLACKOFFLEXIBILITYSOMETIMESOTHERKINDSOFPROBLEMS,SUCHASHIGHINITIALCOSTOFTHESYSTEM,NEEDTOBECONSIDEREDINSPECTIONOFTEXTURALOBJECTTEXTUREISAPHENOMENONTHATISWIDESPREAD,EASYTORECOGNIZEANDHARDTODEFINEHUMANSOFTENDESCRIBETEXTUREASFINE,COARSE,GRAINED,ANDSMOOTH,BUTTHESEDESCRIPTIONSAREQUITEIMPRECISEANDNONQUANTITATIVEINSPITEOFNOPRECISEDEFINITION,ONETHINGABOUTTEXTUREISGENERALLYASSUMEDTOBETRUETEXTUREISABOUTAREGION,ANDTEXTUREOFAPOINTISUNDEFINEDMOREFORMALLY,TEXTURECANBEDESCRIBEDASTHESETOFLOCALNEIGHBORHOODPROPERTIESOFANIMAGEREGIONTEXTUREEXISTSINVARIOUSINDUSTRIALINSPECTIONAPPLICATIONSLIKESUBSTRATEBOARDSANDLIGHTEMITTINGDIODESLEDSFORSEMICONDUCTORASSEMBLYANDPACKAGINGPROCESSES,PRINTEDCIRCUITBOARDSPCBSANDCHAPTER1INTRODUCTION4TEXTUREDMATERIALSINTHISTHESIS,WEDEFINEOBJECTSTHATCONTAINTEXTUREPROPERTIESASTEXTURALOBJECTWITHTHISDEFINITION,ASETOFINDUSTRIALINSPECTIONPROBLEMSCANBECONSIDEREDASASINGLEONEPROBLEM,WHICHENHANCESTHEINSPECTIONCAPABILITIESINGENERAL,SURFACEINSPECTIONFALLSINTOONEOFTHETHREECATEGORIESREFERENCECOMPARISON,NONREFERENTIALAPPROACHESANDHYBRIDAPPROACHESCOMBINATIONOFTHEABOVETWOMETHODS4REFERENCECOMPARISONMETHODISTHESIMPLESTMETHOD,INCLUDINGIMAGESUBTRACTION,FEATUREMATCHINGANDPHASEONLYMETHODIMAGESUBTRACTIONPROVIDESTHEMOSTUSEFULPHYSICALMEANINGSINCHARACTERIZATIONOFDEFECTPATTERNS,BUTONEOFTHEBIGGESTPRACTICALPROBLEMSISIMAGEREGISTRATION5INFEATUREMATCHING,THEEXTRACTEDFEATURESFROMTHEOBJECTANDTHOSEDEFINEDBYTHEMODELARECOMPAREDBUTITISLIMITEDBYUSINGENORMOUSNUMBEROFTEMPLATESANDLACKSOFSTABILITYPHASEONLYMETHODUSESFOURIERTRANSFORMBYNORMALIZATIONOFTHEIMAGEAMPLITUDESOITCANTOLERATEROTATIONSOFTHEIMAGESTOBECOMPAREDINSOMEEXTENTPRACTICALPROBLEMSOFOBJECTDISTORTIONCANNOTTOTALLYBERESOLVEDNONREFERENTIALAPPROACHESAREWORKINGONTHEIDEATHATAPATTERNISDEFECTIVEIFITDOESNOTCONFIRMTOTHEDESIGNSPECIFICATIONSTANDARDS,PREDEFINEDMODELSORDESIGNRULESOFSPECIFICPATTERN6,7BUTITONLYWORKSWELLINIDENTIFYINGSOMEKINDSOFDEFECTSHYBRIDAPPROACHESCOMBINESTHEREFERENCECOMPARISONANDNONREFERENCEMETHODSALONE,ANDCOVERSALARGEVARIETYOFDEFECTS8,9HOWEVER,ITISMUCHCOMPLICATEDTODESIGNANEFFICIENTHYBRIDDETECTORTEXTURE,ASANIMPORTANTCUEFORTHEANALYSISOFIMAGES,HASBEENSUCCESSFULLYUTILIZEDINAUTOMATEDINSPECTION1014THEAVAILABLEMETHODSMIGHTBECATEGORIZEDINTOSTATISTICAL,MODELBASEDANDSPECTRALMETHODS15SPATIALGRAYLEVELCOOCCURRENCEMATRICESGLCM16AREONEOFTHEMOSTWELLKNOWNANDWIDELYUSEDTEXTUREFEATURESIIVARINENETALAPPLIEDCOOCCURRENCETEXTUREFEATURESTODETECTINGDEFECTSINPAPERWEBWHERETHENORMALTEXTURESHAVECHARACTERISTICFREQUENCY17OJALAETALFIRSTINTRODUCEDLOCALBINARYPATTERNLBPOPERATOR18,WHICHHASEVOLVEDTOPRESENTAMAJORBREAKTHROUGHINTEXTUREANALYSISITHASBEENAPPLIEDTODEFECTDETECTIONONCERAMICTILECHAPTER1INTRODUCTION5SURFACES19,ANDWOOD20INTHELASTSEVERALDECADES,THEMULTICHANNELGABORFILTERS21,22AREWELLRECOGNIZEDASAJOINTSPATIAL/SPATIALFREQUENCYREPRESENTATIONFORANALYZINGTEXTUREDIMAGESWITHHIGHLYSPECIFICFREQUENCYANDORIENTATIONCHARACTERISTICSVANDEWOUWERETAL23EXTENDEDTHEMULTIRESOLUTIONWAVELETTECHNIQUESTOCOLORTEXTURECLASSIFICATIONDUMINGTSAI24PROPOSEDAMULTIRESOLUTIONAPPROACHFORTEXTUREINSPECTIONBASEDONANEFFICIENTIMAGERESTORTATIONSCHEMEUSINGWAVELETTRANSFORM12MOTIVATIONFROMTHEDESCRIPTIONINSEC11,ITCANBECONCLUDEDTHATVISUALINSPECTIONSYSTEMISATRENDOFTECHNICALINNOVATIONFORAUTOMATEDMANUFACTURINGDEFECTDETECTIONALGORITHMISTHECOREPARTOFANYVISUALINSPECTIONSYSTEMANDISRESPONSIBLEFORITSCOMMERCIALSUCCESSDEFECTDETECTIONALGORITHMSAREEXPECTEDTOPROVIDEASOLUTIONWITHRELIABLEANDEFFECTIVEPERFORMANCEIMAGESUBTRACTION,ASTHESIMPLESTANDMOSTDIRECTREFERENTIALAPPROACH,ISQUITEUSEFULUNDERTHECONDITIONOFPRECISEIMAGEREGISTRATIONITISSUPPOSEDTOVERIFYALLTHEPOTENTIALFLAWSWITHOUTLOSINGANYPHYSICALMEANINGS,SUCHASTHESIZE,SHAPE,INTENSITYCONTRASTANDSPATIALARRANGEMENTUNFORTUNATELY,DUETOOBJECTDISTORTIONORTHEINFLUENCEOFTEXTURES,IMAGEREGISTRATIONINACCURACYAPPEARSANDBRINGSFALSEDEFECTSHOWEVER,ACCORDINGTOTHEFACTTHATTHEFREQUENCYINFORMATIONANDLOCATIONOFMISALIGNMENTCHANGESCAUSEDBYOBJECTDISTORTIONORTEXTURESOFTENEXISTINACERTAINAREA,IFWECANFINDAPROPERWAYTOACCURATELYDETERMINEATOLERANCECONTROLZONEFOREACHPIXELINTHEREFERENCEANDINSPECTEDIMAGES,ITWILLENABLEUSTOREDUCETHEMISJUDGMENTONTHISDEFECTDETECTIONALGORITHMSAREEXPECTEDTOBEFLEXIBLEMOSTOFTHEINSPECTIONALGORITHMSAREDESIGNEDFORASPECIFICTASKANDLACKOFFLEXIBILITYFORTEXTUREDMATERIALS,MOSTOFTHEPREVIOUSTEXTUREINSPECTIONTECHNIQUESONLYFOCUSONTHEINSPECTIONOFLOCALDEFECTSEMBEDDEDINHOMOGENEOUSTEXTUREDSURFACESALSOSOMECOMPLICATEDALGORITHMSAREDIFFICULTTOPROCESSBYONLYSOFTWAREADDITIONALPARALLELPIPELINEARCHITECTURESAREREQUIREDFORHIGHSPEEDPROCESSINGITISNECESSARYTODEVELOPVISUALCHAPTER1INTRODUCTION6INSPECTIONALGORITHMSWHICHCANENHANCETHEINSPECTIONCAPABILITIESOFPRESENTSYSTEMSANDALSOHAVEAVARIETYOFINDUSTRIALINSPECTIONAPPLICATIONS13RESEARCHCONTENT1RESEARCHONTEXTUREANALYSISTECHNIQUES2RESEARCHONWAVELETTEXTUREANALYSISMETHODS,ANDUSINGSTEERABLEPYRAMIDDECOMPOSITIONANDRECONSTRUCTIONFORDEFECTDETECTION3DEVELOPINGTOLERANCECONTROLALGORITHMSTODEALWITHOBJECTDISTORTIONANDTHEINFLUENCEOFTEXTURES4ALGORITHMIMPROVEMENTSFORDETAILSCONSIDERINGLIKEMINUTEDEFECTSONNARROWLINES,PATTERNEDGES,SPACEPATTERNSANDILLUMINATIONETC5SUMMARIZINGTHEEXPERIMENTSANDTHEORETICALCONCLUSION6USERCONSOLEGRAPHICALUSERINTERFACEDESIGN14THESISORGANIZATIONTHEREMAININGSECTIONSOFTHISTHESISAREORGANIZEDASFOLLOWSCHAPTER2,WESURVEYTHERELATEDWORKSTOTEXTUREANALYSISTECHNIQUESWAVELETTEXTUREANALYSISTECHNIQUESFORDEFECTDETECTIONSAREDESCRIBEDINCHAPTER3CHAPTER4EXPLAINSTHESTEERABLEPYRAMIDANDDEFECTDETECTIONALGORITHMEXPERIMENTSRESULTSAREALSOILLUSTRATEDANDDISCUSSEDINCHAPTER5,GRAPHICUSERINTERFACEISPROPOSEDCONCLUSIONSAREGIVENINTHEFINALSECTIONCHAPTER2TEXTUREANALYSISTECHNIQUES7CHAPTER2TEXTUREANALYSISTECHNIQUESASANIMPORTANTCUEFORTHEANALYSISOFIMAGES,TEXTUREHASBEENSUCCESSFULLYUTILIZEDINAUTOMATEDINSPECTIONMOSTOFTHEPREVIOUSTEXTUREINSPECTIONTECHNIQUESFOCUSONTHEUNIFORMTEXTUREDMATERIALSSUCHASTEXTILEFABRICSOMEWORKSONRANDOMTEXTUREDMATERIALSAREALSOINCLUDEDMANYTEXTUREANALYSISMETHODSHAVEBEENPROPOSEDINTHEPASTSEVERALDECADESTHEAVAILABLEMETHODSMIGHTBECATEGORIZEDINTOSTATISTICAL,MODELBASEDANDSPECTRALMETHODSUSEFULPHYSICALMEANINGINCHARACTERIZATIONOFDEFECTPATTERNSISANIMPORTANTASPECTFORDEFECTINSPECTIONALGORITHMSINTHISCHAPTER,WEWILLRESEARCHONASETOFTEXTUREANALYSISTECHNIQUES,ANDFINDPROPERTEXTUREANALYSISMETHODSFORTEXTURALOBJECTINSPECTIONITISSUPPOSEDTOPROVIDEUSEFULPHYSICALMEANINGSINCHARACTERIZATIONOFDEFECTPATTERNS21TEXTUREANALYSISASANIMPORTANTCUEFORTHEANALYSISOFMANYTYPESOFIMAGES,TEXTUREISUSEDTOPOINTTOINTRINSICPROPERTIESOFSURFACES,ESPECIALLYTHOSETHATDONTHAVEASMOOTHLYVARYINGINTENSITY14ITINCLUDESINTUITIVEPROPERTIESLIKEROUGHNESS,GRANULATIONANDREGULARITYACTUALLYTHE“DEFINITION”OFTEXTURECANOFTENBEFORMULATEDBYDIFFERENTPEOPLEDEPENDINGUPONTHEPARTICULARAPPLICATIONINSPITEOFNOGENERALDEFINITION,THEREAREANUMBEROFINTUITIVEPROPERTIESOFTEXTUREWHICHAREGENERALLYASSUMEDTOBETRUE151TEXTUREISAPROPERTYOFAREASTHETEXTUREOFAPOINTISUNDEFINED2TEXTUREINVOLVESTHESPATIALDISTRIBUTIONOFGRAYLEVELSCHAPTER2TEXTUREANALYSISTECHNIQUES83TEXTURECANBEPERCEIVEDATDIFFERENTSCALESORLEVELSOFRESOLUTION4AREGIONISPERCEIVEDTOHAVETEXTUREWHENTHENUMBEROFPRIMITIVEOBJECTSINTHEREGIONISLARGETEXTUREISACONTEXTUALPROPERTYANDITSDEFINITIONINVOLVESGRAYVALUESDISTRIBUTIONINASPATIALNEIGHBORHOODTHESIZEOFTHISNEIGHBORHOODDEPENDSUPONTHETEXTURETYPE,ORTHESIZEOFTHEPRIMITIVESDEFININGTHETEXTUREMOREFORMALLY,TEXTURECANBEDEFINEDASTHESETOFLOCALNEIGHBORHOODPROPERTIESOFTHEGREYLEVELSOFANIMAGEREGIONTAKEFIGURE21ASAREFERENCEDIFFERENTNEIGHBORHOODSOFTHEPIXELSWITHTHESAMEGRAYLEVELMAYHAVEDIFFERENTTEXTUREPROPERTIESFIGURE21THEINTERPRETATIONOFTEXTURESTHEREARETHREESTANDARDPROBLEMSTODOWITHTEXTURE251TEXTURECLASSIFICATIONSEEKSTOPRODUCEACLASSIFICATIONMAPOFTHEINPUTIMAGEWHEREEACHUNIFORMTEXTUREDREGIONISIDENTIFIEDWITHTHETEXTURECLASSITBELONGSTO2TEXTURESEGMENTATIONISTHEPROBLEMOFBREAKINGANIMAGEINTOCOMPONENTSWITHINWHICHTHETEXTUREISCONSTANTTEXTURESEGMENTATIONINVOLVESBOTHREPRESENTINGATEXTURE,ANDDETERMININGTHEBASISONWHICHSEGMENTBOUNDARIESARETOBEDETERMINED3TEXTURESYNTHESISSEEKSTOCONSTRUCTLARGEREGIONSOFTEXTUREFROMSMALLEXAMPLEIMAGESWEDOTHISBYUSINGTHEEXAMPLEIMAGESTOBUILDPROBABILITYMODELSOFTHETEXTURE,ANDTHENDRAWINGONTHEPROBABILITYMODELTOOBTAINTEXTUREDIMAGESNEIGHBORHOODPROPERTIESPIXELALONECHAPTER2TEXTUREANALYSISTECHNIQUES9TEXTUREANALYSISISCONSIDEREDASACHALLENGINGTASKTEXTUREANALYSISMETHODSHAVEBEENUTILIZEDINAVARIETYOFAPPLICATIONDOMAINS,SUCHASAUTOMATEDINSPECTION,DOCUMENTPROCESSING,ANDREMOTESENSINGTEXTUREDEFECTDETECTIONISONEOFTHEASPECTSOFAUTOMATEDINSPECTIONITMEANSTODECIDEWHETHERATEXTUREISASITISEXPECTEDTOBE26FORMALLY,ITCANBEDEFINEDASTHEPROCESSOFDETERMININGTHELOCATIONAND/OREXTENDOFACOLLECTIONOFPIXELSINATEXTUREDIMAGEWITHREMARKABLEDEVIATIONINTHEIRINTENSITYVALUESORSPATIALARRANGEMENTWITHRESPECTTOTHEBACKGROUNDTEXTUREMANYTEXTUREANALYSISMETHODSHAVEBEENPROPOSEDINTHEPASTSEVERALDECADESTHEAVAILABLEMETHODSMIGHTBECATEGORIZEDINTOSTATISTICAL,MODELBASEDANDSPECTRALMETHODS22STATISTICALMETHODINSTATISTICALMETHOD,ASETOFGRAYVALUEDISTRIBUTIONFEATURESHAVEBEENEXTRACTEDFORFURTHERANALYSISALARGENUMBEROFSTATISTICALTEXTUREFEATURESHAVEBEENPROPOSED,TYPICALLYTEXTUREDESCRIPTIONSFROMGRAYLEVELCOOCCURRENCEMATRICESGLCM2628ANDLOCALBINARYPATTERNSLBP29,30HAVEBEENAPPLIEDTO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可穿戴数据驱动的抑郁精准医疗策略
- 2025年观赏鱼苗配送合同(鲵鱼)
- 2025广西北海市选聘两新组织党建工作组织员32人备考题库附答案
- 历史数据缺失时外部对照的替代策略
- 2026年自媒体内容定位策略与账号特色化打造指南
- 2026年一级建造师之一建铁路工程实务考试题库300道含答案【达标题】
- 2026年一级注册建筑师之建筑物理与建筑设备考试题库300道附答案(a卷)
- 2025浙江金华市武义县部分国有企业招聘25人考前自测高频考点模拟试题附答案
- 2025浙江宁波城建投资集团招聘笔试备考试题附答案
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道及答案(考点梳理)
- 洁净工作台性能参数校准规范
- 25道鼎和财产保险股份有限公司保险财务人员岗位常见面试问题含HR常问问题考察点及参考回答
- 道路运输企业两类人员安全考核题库(含答案)
- 三年级上学期数学期末试卷带答题卡
- JGJ376-2015 建筑外墙外保温系统修缮标准
- 人力资源外包服务劳务外包劳务派遣投标方案
- 循环流化床锅炉防磨防爆检查与检修剖析课件
- 20212022(2)学期医用物理学学习通超星课后章节答案期末考试题库2023年
- GB/T 21296.6-2022动态公路车辆自动衡器第6部分:平板模块式
- 中华碑帖精粹:赵孟頫胆巴碑
- 《绿色化学》教学大纲
评论
0/150
提交评论