3.1.1方程的根与函数的零点..ppt_第1页
3.1.1方程的根与函数的零点..ppt_第2页
3.1.1方程的根与函数的零点..ppt_第3页
3.1.1方程的根与函数的零点..ppt_第4页
3.1.1方程的根与函数的零点..ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.1.1 方程的根与函数的零点,哈尔滨市第三十二中学校 郝戈,结合我们学习过的知识,求下列方程的实数根: (1) (2),方程 是否有实根?为什么?,当遇到一个复杂的问题,我们一般应该怎么办,类比一次函数零点定义,看二次函数。,x1=1 x2=3,ax2+bx+c=0 a0 0,y=ax2+bx+c (a0),一元二次方程ax2+bx+c=0(a0)的根与二次函数 y= ax2+bx+c(a0)的图象有如下关系:,x|xx2,x|x1xx2,R,函数的图象与 x 轴的交点,(x1,0) , (x2,0),没有交点,有两个相等的实数根x1 = x2,没有实数根,两个不相等的实数根x1 、x2,

2、一、函数零点的定义:,思考:零点是不是点?,零点指的是一个实数.,练习.求下列二次函数f(x)=x2-2x-3函数的零点,方程 是否有实根?为什么?,观察二次函数f(x)=x2-2x-3图象,5,-4,-1,3,-3,5,如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,,那么,函数y=f(x)在区间,函数零点存在性定理,(a,b) 内有零点,即存c(a,b),使得f(c)=0,这个c也 就是方程f(x)=0的根。,思考,(1)如果函数的图象不是连续不断的,结论还成立?,(2)若f(a)f(b)0,函数在(a,b)一定没有零点?,如果函数y=f(x)在区间

3、a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,,那么,函数y=f(x)在区间,函数零点存在性定理,(a,b) 内有零点,即存c(a,b),使得f(c)=0,这个c也 就是方程f(x)=0的根。,思考,(3)函数y=f(x)在(a,b)内有零点,一定能得出f(a)f(b)0 的结论?,如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,,那么,函数y=f(x)在区间,函数零点存在性定理,(a,b) 内有零点,即存c(a,b),使得f(c)=0,这个c也 就是方程f(x)=0的根。,思考,(4)满足定理条件时,函数在区间(a,b)上只有一个零点?

4、,(5)增加什么条件时,函数在区间(a,b)上只有一个零点?,推论,如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且在闭区间的两个端点上的函数值互异即f(a)f(b)0,且是单调函数,那么,这个函数在(a,b)内必有唯一的一个零点。,例1:观察下列数据 分析函数f(x)=lnx+2x-6的零点个数.,f(2)0,即f(2)f(3)0,函数在区间(2,3)内有零点。,由于函数f(x)在定义域 (0,+)内是增函数,所以 它仅有一个零点。,例1:求函数f(x)=lnx+2x-6的零点个数.,将函数f(x)=lnx+2x-6的零点个数转化为函数 g(x)=lnx与h(x)=-2x+6的图象交点的个数。,随堂练习 已知函数f(x)的图象是连续不断的,且有如下对应值表,则函数在哪几个区间内零点?为什么?,1,2,3,4,6,10,x,f(x),20,-5.5,-2,6,18,-3,课堂小结,(1)函数零点的概念;,(3)函数零点的存在性定理;,(4)学会函数与方程和数形结合的思想;,(5)函数的零点判断方法 方程法 图象法 定理法,(2)方程的根与函数的零点;,练习2:f(x)=x3+x-1在下列哪个区间上有零点( ) A.(-2,-1) B.(0,1) C.(1,2) D.(2,3),练习1:对于定义在R上的连续函数y=f(x),若f(a).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论