![[高考]12命题及其关系、充分条件与必要条件_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-11/13/b5e2e20b-47da-4128-b813-57b2fefa98eb/b5e2e20b-47da-4128-b813-57b2fefa98eb1.gif)
![[高考]12命题及其关系、充分条件与必要条件_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-11/13/b5e2e20b-47da-4128-b813-57b2fefa98eb/b5e2e20b-47da-4128-b813-57b2fefa98eb2.gif)
![[高考]12命题及其关系、充分条件与必要条件_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-11/13/b5e2e20b-47da-4128-b813-57b2fefa98eb/b5e2e20b-47da-4128-b813-57b2fefa98eb3.gif)
![[高考]12命题及其关系、充分条件与必要条件_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-11/13/b5e2e20b-47da-4128-b813-57b2fefa98eb/b5e2e20b-47da-4128-b813-57b2fefa98eb4.gif)
![[高考]12命题及其关系、充分条件与必要条件_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-11/13/b5e2e20b-47da-4128-b813-57b2fefa98eb/b5e2e20b-47da-4128-b813-57b2fefa98eb5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一编 集合与常用逻辑用语,柯桥中学高三数学组 何利民,1.2 命题及其关系、充分条 件与必要条件,要点梳理 1.命题的概念 在数学中用语言、符号或式子表达的,可以_ 的陈述句叫做命题.其中_的语句叫真命题, _的语句叫假命题.,判断真假,判断为真,判断为假,基础知识 自主学习,命题的否定,一般地,对于一个命题的全盘否定,得到了一个新的命题,记作p,读作“非p”或“p的否定”,p与p真假性相反。 当p为真命题时,则p为假命题; 当p为假命题时,则p为真命题。,2.四种命题及其关系,若q,则p,逆命题,逆否命题,否命题,四种命题的真假关系 两个命题互为逆否命题,它们有_的真假性; 两个命题互为逆
2、命题或互为否命题,它们的真假 性_. 3.充分条件与必要条件 (1)如果p q,则p是q的_,q是p的_; (2)如果pq,qp,则p是q的_. 4.特别注意:命题的否命题是既否定命题的条件,又 否定命题的结论;而命题的否定是只否定命题的 结论.,相同,没有关系,充分条件,必要条件,充要条件,基础自测 1.下列语句是命题的是 ( ) 求证 是无理数; x2+4x+40; 你是高一的学生吗? 一个正数不是素数就是合数; 若xR,则x2+4x+70. A. B. C. D.,C,2.命题“若x2y2,则xy”的逆否命题是 ( ) A.“若xy,则x2y2” C.“若xy,则x2y2” D.“若xy
3、,则x2y2”,C,3.(2009江西文,1)下列命题是真命题的为( ) A. B.若x2=1,则x=1 C.若x=y,则 D.若xy,则x2y2,A,4.(2008湖北理,2)若非空集合A、B、C满足 AB=C,且B不是A的子集,则 ( ) A.“xC”是“xA”的充分条件但不是必要条件 B.“xC”是“xA”的必要条件但不是充分条件 C.“xC”是“xA”的充要条件 D.“xC”既不是“xA”的充分条件也不是 “xA”的必要条件 解析 由题意知,A、B、C的关系可用 右图来表示. 若xC,不一定有xA,而xA,则必有xC, “xC”是“xA”的必要条件但不是充分条件.,B,5.(2009四
4、川文,7)已知a,b,c,d为实数,且cd,则 “ab”是“a-cb-d”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 解析 cd,-cb, a-c与b-d的大小无法比较; 当a-cb-d成立时,假设ab,-cb. 综上可知,“ab”是“a-cb-d”的必要不充分 条件.,B,6 、(07江西) 设p:f(x)exln x2x2mx1在(0,)内单调递增,q:m5,则p是q的( ) A充分不必要条件 B必要不充分条件 C充分必要条件 D既不充分也不必要条件,B,7、(07湖北) 已知p是r的充分条件而不是必要条件, q是r的充分条件,s是r的必
5、要条件,q是s的必要条件。现有下列命题:s是q的充要条件;p是q的充分条件而不是必要条件;r是q的必要条件而不是充分条件;p的s必要条件而不是充分条件;r是s的充分条件而不是必要条件,则正确命题序号是( ) A. B. C. D. ,B,8、(2009浙江理)已知是实数,则“a0且b0”是“a+b0且ab0”的 ( ) A充分而不必要条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件,C,9、(2009年上海卷理)-2a2是“实系数一元二次方程x2+ax+1=0有虚根”的( ) A 必要不充分条件 B 充分不必要条件 C 充要条件 D 既不充分也不必要条,A,10、(06湖南高考
6、) 集合Ax|0,Bx | x -b|a,若“a1” 是“AB”的充分条件,则b的取值范围是() A2b0B0b2 C3b1D1b2,D,题型一 命题的关系及命题真假的判断 【例1】分别写出下列命题的逆命题、否命题、逆否 命题,并判断它们的真假. (1)面积相等的两个三角形是全等三角形. (2)若q1,则方程x2+2x+q=0有实根. (3)若x2+y2=0,则实数x、y全为零. ,写成“若p,则q”的形式,写出逆命题、否命题、逆否命题,判断真假,思维启迪,题型分类 深度剖析,解 (1)逆命题:全等三角形的面积相等,真命题. 否命题:面积不相等的两个三角形不是全等三角形,真命题. 逆否命题:两
7、个不全等的三角形的面积不相等,假命题. (2)逆命题:若方程x2+2x+q=0有实根,则q1,假命题. 否命题:若q1,则方程x2+2x+q=0无实根,假命题. 逆否命题:若方程x2+2x+q=0无实根,则q1,真命题. (3)逆命题:若实数x,y全为零,则x2+y2=0,真命题. 否命题:若x2+y20,则实数x,y不全为零,真命题. 逆否命题:若实数x,y不全为零,则x2+y20,真命题.,(1)在写一个命题的逆命题、否命题、逆否命题时, 首先要看这个命题是否有大前提.若有大前提,必须保留其大 前提,大前提不能动. (2) 原命题和其逆否命题等价.,探究提高,知能迁移1 写出下列命题的逆命
8、题、否命题和逆否 命题,并判断其真假. (1)若m,n都是奇数,则m+n是奇数. (2)若x+y=5,则x=3且y=2. 解 (1)逆命题:若m+n是奇数,则m,n都是奇数,假命题. 否命题:若m、n不都是奇数,则m+n不是奇数,假命题. 逆否命题:若m+n不是奇数,则m,n不都是奇数,假命题. (2)逆命题:若x=3且y=2,则x+y=5,真命题. 否命题:若x+y5,则x3或y2,真命题. 逆否命题:若x3或y2,则x+y5,假命题.,题型二 充要条件的判断 【例2】指出下列命题中,p是q的什么条件(在“充 分不必要条件”、“必要不充分条件”、“充要条 件”、“既不充分也不必要条件”中选出
9、一种作答). (1)在ABC中,p:A=B,q:sin A=sin B; (2)对于实数x、y,p:x+y8,q:x2或y6; (3)非空集合A、B中,p:xAB,q:xB; (4)已知x、yR,p:(x-1)2+(y-2)2=0, q:(x-1)(y-2)=0. 首先分清条件和结论,然后根据充要条 件的定义进行判断.,思维启迪,解 (1)在ABC中,A=B sin A=sin B,反 之,若sin A=sin B,因为A与B不可能互补(因为三 角形三个内角和为180),所以只有A=B. 故p是q的充要条件. (2)易知, p:x+y=8, q:x=2且y=6,显然 q p, 但 p q,即
10、q是 p的充分不必要条件,根据原命题 和逆否命题的等价性知,p是q的充分不必要条件. (3)显然xAB不一定有xB,但xB一定有 xAB,所以p是q的必要不充分条件. (4)条件p:x=1且y=2,条件q:x=1或y=2, 所以pq但q p,故p是q的充分不必要条件.,探究提高 判断p是q的什么条件,需要从两方面分 析:一是由条件p能否推得条件q,二是由条件q能否推 得条件p.对于带有否定性的命题或比较难判断的命 题,除借助集合思想把抽象、复杂问题形象化、直观 化外,还可利用原命题和逆否命题、逆命题和否命题 的等价性,转化为判断它的等价命题.,知能迁移2 (2009安徽理,4)下列选项中,p是
11、 q的必要不充分条件的是 ( ) A.p:a+cb+d,q:ab且cd B.p:a1,b1,q:f(x)=ax-b(a0,且a1)的图象不过 第二象限 C.p:x=1,q:x2=x D.p:a1,q:f(x)=logax(a0,且a1)在(0,+)上 为增函数,A,解析 由于ab,cd a+cb+d,而a+cb+d却不一定 推出ab,cd.故A中p是q的必要不充分条件.B中,当 a1,b1时,函数f(x)=ax-b不过第二象限,当f(x)=ax- b不过第二象限时,有a1,b1.故B中p是q的充分不 必要条件.C中,因为x=1时有x2=x,但x2=x时不一定有 x=1,故C中p是q的充分不必要
12、条件.D中p是q的充要条 件. 答案 A,题型三 充要条件的证明 【例3】 (12分)求证方程ax2+2x+1=0有且只有一个 负数根的充要条件为a0或a=1. 思维启迪 (1)注意讨论a的不同取值情况; (2)利用根的判别式求a的取值范围. 证明 充分性: 当a=0时,方程变为2x+1=0,其根为 方程只有一负根. 2分 当a=1时,方程为x2+2x+1=0,其根为x=-1, 方程只有一负根. 4分 当a0,方程有两个不相等的根,,解题示范,且 0,方程有一正一负根. 6分 必要性: 若方程ax2+2x+1=0有且仅有一负根. 当a=0时,适合条件. 8分 当a0时,方程ax2+2x+1=0
13、有实根, 则=4-4a0,a1, 当a=1时,方程有一负根x=-1. 10分 若方程有且仅有一负根, 综上,方程ax2+2x+1=0有且仅有一负根的充要条件为 a0或a=1. 12分,探究提高 (1)条件已知证明结论成立是充分性, 结论已知推出条件成立是必要性; (2)证明分为两个环节,一是充分性;二是必要性. 证明时,不要认为它是推理过程的“双向书写”,而 应该进行由条件到结论,由结论到条件的两次证明; (3)证明时易出现必要性与充分性混淆的情形,这 就要分清哪是条件,哪是结论.,知能迁移3 求证方程x2+ax+1=0的两实根的平方和大 于3的必要条件是|a| 这个条件是其充分条件 吗?为什
14、么? 证明 设x2+ax+1=0的两实根为x1,x2, 则平方和大于3的等价条件是 |a| 这个条件是必要条件但不是充分条件.,例4.已知抛物线y=-x2+mx-1 点A(3,0) B(0,3),求抛物线与线段AB有两个不同交点的充要条件.,设f(x)=x2-(1+m)x+4则,1.当一个命题有大前提而要写出其它三种命题时,必 须保留大前提,也就是大前提不动;对于由多个并 列条件组成的命题,在写其它三种命题时,应把其 中一个(或n个)作为大前提. 2.数学中的定义、公理、公式、定理都是命题,但命 题与定理是有区别的;命题有真假之分,而定理都 是真的.,方法与技巧,思想方法 感悟提高,3.命题的
15、充要关系的判断方法 (1)定义法:直接判断“若p则q”、“若q则p”的真假. (2)等价法:即利用 的等价关系,对 于条件或结论是否定式的命题,一般运用等价法. (3)利用集合间的包含关系判断:若AB,则A是B的 充分条件或B是A的必要条件;若A=B,则A是B的充要 条件.,1.否命题是既否定命题的条件,又否定命题的结论, 而命题的否定是只否定命题的结论.要注意区别. 2.判断p与q之间的关系时,要注意p与q之间关系的方 向性,充分条件与必要条件方向正好相反,不要混淆.,失误与防范,一、选择题 1.(2009重庆文,2)命题“若一个数是负数,则 它的平方是正数”的逆命题是 ( ) A.“若一个
16、数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数” 解析 原命题的逆命题:若一个数的平方是正数, 则它是负数.,B,定时检测,2.(2009浙江理,2)已知a,b是实数,则“a0且 b0”是“a+b0且ab0”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析 当a0且b0时,一定有a+b0且ab0.反之, 当a+b0且ab0时,一定有a0,b0.故“a0且b0” 是“a+b0且ab0”的充要条件.,C,3.(2008广东文,8
17、)命题“若函数f(x)=logax (a0,a1)在其定义域内是减函数,则loga20,a1)在其定 义域内不是减函数 B.若loga20,a1)在其定 义域内不是减函数 C.若loga20,则函数f(x)=logax(a0,a1)在其定 义域内是减函数 D.若loga20,a1)在其定义 域内是减函数,解析 由互为逆否命题的关系可知,原命题的逆否命 题为:若loga20,则函数f(x)=logax(a0,a1) 在其定义域内不是减函数. 答案 A,4.已知A=x|x-1|1,xR,B=x|log2x1,xR, 则“xA”是“xB”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充
18、分必要条件 D.既不充分也不必要条件 解析 A=x|x2或x0,B=x|x2, xA xB,但xB xA.,B,5.集合A=x|x|4,xR,B=x|x5”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 A=x|-4x4,若AB,则a4, a4 a5,但a5a4. 故“A B”是“a5”的必要不充分条件.,B,6.(2009北京文,6) 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析 这说明 外 还可以取其他的值.所以 的 充分而不必要条件.,A,二、填空题 7.若“x2,5或xx|x4”是假命题,则x 的取值范围是_. 解析 x2,5且xx|x4是真命题. 由 得1x2 .,1,2),8.设p:|4x-3|1;q:(x-a)(x-a-1)0,若p是q的充 分不必要条件,则实数a的取值范围是_. 解析 p: x1,q:axa+1, 易知p是q的真子集,,9.(2009江苏,12)设 和 为不重合的两个平面, 给出下列命题:若 内的两条相交直线分别平行 于 内的两条直线,则 平行于 ; 若 外一条直线l与 内的一条直线平行,则l和 平行; 设 和 相交于直线l,若 内有一条直线垂直于 l,则 和 垂直; 直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省扬州市宝应县2024-2025学年七年级下学期6月期末考试语文试卷(含答案)
- 北师大版三年级数学上册期末原创提优(A卷)(含答案)
- 辽宁省阜新实验中学2026届中考数学押题试卷含解析
- 智能租赁模式创新-洞察及研究
- 山东省滕州市北辛中学2026届中考物理最后一模试卷含解析
- 山东省济南市高新区重点名校2026届中考试题猜想物理试卷含解析
- 天津市津南区市级名校2026届中考数学最后一模试卷含解析
- 2025年天津继续教育公需科目练习题及答案
- 2025年中山市高新技术企业员工续约及保密竞业限制合同样本
- 2025年文化产业发展版权代理及授权合作协议
- 学堂在线 高技术与现代局部战争 章节测试答案
- 煤矿职业病防治讲义课件
- 2025发展对象考试题库(带答案)
- 测井工岗位实习报告
- 2025至2030三元乙丙橡胶密封制品行业产业运行态势及投资规划深度研究报告
- 应急与消防培训课件
- 消化内镜室医院感染管理制度
- 精神科专科监护技能课件
- 2024-2025学年辽宁省七年级数学第一学期期末经典试题含解析
- 压疮的中医护理措施
- 业余无线电基础知识课件
评论
0/150
提交评论