




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、勾股定理专项练习11. 如图字母b 所代表的正方形的面积是()25a. 12b. 13c. 144d. 194b2.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底 ,竹169竿高出水面 0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为 ().a.2m b.2.5cmc.2.25md.3m3. abc 中 ,若 ab=15,ac=13, 高 ad=12, 则 abc 的周长是 ()a.42b.32c.42 或 32d.37 或 332224、已知 x、 y 为正数,且 x-4+( y -3)=0,如果以 x、 y 的长为直角边作一个直角三角形,那么以这个直角
2、三角形的斜边为边长的正方形的面积为()a 、 5b、 25c、 7d、155. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是()a. ab=h 2b. a2+b2=2h2111d.111c.+b=a2 +2=2ahbh6.已知,如图,在矩形abcd 中, p是边 ad 上的动点, peacp于e, pfbd 于 f,如果 ab=3 ,ad=4 ,那么()aa. pepf12;b.12 pepf 13 ;ef555c. pepf5d.3 pepf 4b第6题7( 1)在 rt abc 中, c=90若 ab=41 , ac=9 ,则 bc=_ ;若 ac=1.5 ,
3、 bc=2 ,则 ab=_ , abc的面积为 _8.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,?他搬来了一架高为2.5 米的梯子 ,要想把拉花挂在高2.4 米的墙上 ,?小虎应把梯子的底端放在距离墙_米处 .9.在 abc 中, c=90 0,, bc=60cm,ca=80cm, 一只蜗牛从 c点出发,以每分20cm的速度沿ca-ab-bc 的路径再回到 c点,需要 _分的时间 .10.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm,?a 和 b 是这个台阶两个相对的端点,a 点有一只蚂蚁,想到b 点去吃可口的食物,则蚂蚁沿着台阶面爬到 b 点的最短
4、路程是_a 2023b11.已知直角三角形两边x、y 的长满足 x24y25y6 0,则第三边长为dc .12.如图 7 所示 ,rt abc 中 ,bc 是斜边 ,将 abp 绕点 a 逆时针旋转后 ,能与 acp 重合 ,如果 ap=3, 你能求出 pp的长吗 ?appbc13.如图 4为某楼梯 ,测得楼梯的长为 5米 ,高3米 ,计划在楼梯表面铺地毯 ,地毯的长度至少需要多少米 ?3 米5 米14.如图 2,小李准备建一个蔬菜大棚,棚宽4 米,高 3 米,长 20 米,棚的斜面用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积.3 米4 米20 米15.如图所示 ,有一条小路穿过长方形
5、的草地 abcd, 若 ab=60m,bc=84m,ae=100m,? 则这条小路的面积是多少 ?afdbec16 4 个全等的直角三角形的直角边分别为a、 b,斜边为c现把它们适当拼合,?可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗??试一试bca17. 如图 3,长方体的长be=15cm, 宽 ab=10cm, 高 ad=20cm, 点 m 在 ch 上 ,且 cm=5cm, 一只蚂蚁如果要沿着长方体的表面从点a 爬到点 m, 需要爬行的最短距离是多少?chmdcfeab18中华人民共和国道路交通安全法规定:?小汽车在城市街路上行驶速度不得超过70km/h 如
6、图,一辆小汽车在一条城市道路上直道行驶,?某一时刻刚好行驶到路对面车速检测仪的正前方30m 处, ?过了 2s?后, ?测得小汽车与车速检测仪间距离为50m这辆小汽车超速了吗?小汽车小汽车bca观察点19如图,小红用一张长方形纸片abcd 进行折纸,已知该纸片宽ab 为 8cm,?长 bc? 为10cm当小红折叠时,顶点 d 落在 bc 边上的点 f 处(折痕为 ae )想一想,此时 ec 有多长? ?adebfc20.如图所示 , abc 中 , acb=90,cd ab 于 d,且 ab+bc=18cm, 若要求出 cd? 和 ac 的长 ,还需要添加什么条件 ?cadb21.四 形 ab
7、cd 是 1 的正方形,以 角 ac 作第二个正方形acef ,再以 角 ae 作第二个正方形aegh ,如此下去 正方形abcd 的 a11 ,按上述方法所作的正方形的 依次 a2 , a3 , a4 , an , 求出 a2 , a3 , a4 的 ;根据以上 律写出an 的表达式22、已知:在 rt abc 中, c 900, a、 b、 c 的 分 a、 b、c, abc的面 s,周 l填表:三 a、 b、cab csl3、 4、 525、 12、 1348、 15、 176如果 ab c m, 察上表猜想: s _( 用含有 m 的代数式表示 )l 明中的 23如 , 方格 中每个小
8、方格都是 1 的正方形, 我 把以格点 的多 形称 “格点多 形 ”如 (一)中四 形abcd 就是一个 “格点四 形 ”( 1)求 (一)中四 形abcd 的面 ;( 2)在 (二)方格 中画一个格点三角形efg,使 efg 的面 等于四 形abcd的面 且 称 形adbc (一) (二)勾股定理专项练习21.有五组数: 25,7, 24;16, 20,12; 9, 40, 41; 4, 6, 8; 32,42,52,以各组数为边长,能组成直角三角形的个数为().a.1b.2c.3d.42.三角形的三边长分别为6,8,10,它的最短边上的高为()a.6b.4.5c.2.4d.83.下列各组线
9、段中的三个长度9、12、15; 7、24、25; 32、42、52 ;3a、4a、5a(a0); m2-n2 、2mn、 m2+n 2( m、 n 为正整数,且 mn)其中可以构成直角三角形的有()a 、5 组; b 、 4 组; c、 3 组; d、 2 组4.在同一平面上把三边 bc=3 ,ac=4 、ab=5 的三角形沿最长边ab 翻折后得到 abc,则cc的长等于()1213524a 、 5;b 、 5; c、 6 ;d 、 55. 下列说法中 , 不正确的是 ()a. 三个角的度数之比为 1:3:4 的三角形是直角三角形b. 三个角的度数之比为 3:4:5 的三角形是直角三角形c.
10、三边长度之比为 3:4:5 的三角形是直角三角形d. 三边长度之比为 5:12:13 的三角形是直角三角形6如图,在单位正方形组成的网格图中标有ab、 cd、 ef 、gh 四条线段,其中能构成一个直角三角形三边的线段是()a. cd 、 ef、 ghc. ab、cd 、 ghb. ab、 ef 、ghd. ab、cd 、 ef(第 6 题)7.如图 4 所示 ,所有的四边形都是正方形 ,所有的三角形都是直角三角形 ,?其中最大的正方形的边长为 7cm,则正方形 a,b,c,d 的面积的和是 _cm 2.cbda7cm8已知 2 条线段的长分别为3cm 和4cm,当第三条线段的长为_cm时,这
11、3 条线段能组成一个直角三角形9、在 abc 中,若其三条边的长度分别为方形的面积是_9、12、 15,则以两个这样的三角形所拼成的长10. 传说 ,古埃及人曾用拉绳 ”的方法画直角 ,现有一根长 24 厘米的绳子 ,请你利用它拉出一个周长为24 厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_ 厘米 ,_厘米 ,_厘米 ,其中的道理是 _11. 出一 式子 :32+42=5 2,82+6 2=10 2,152+82=172 ,242 +102=262(1) 你能 上式中的 律 ?(2) 你接着写出第五个式子 .12 察下列各式,你有什么 ?32=4+5 ,52=12+13 , 72
12、=24+25, 92=40+41 到底是巧合, 是有什么 律 涵其中呢? 你 合有关知 行研究?如果132=b+c , b、 c 的 可能是多少13如 , 在 abc 中,ab=ac=13 ,点 d 在 bc 上,ad=12 ,bd=5 , ad 平分 bac ? ? 什么?abdc14如 ,是一个四 形的 角料, 通 量, 得了如下数据: ab=?3cm ,?bc=12cm , cd=13cm , ad=4cm , 由此 个四 形中 a 恰好是直角, ?你 的判断正确 ?如果你 他正确, 明其中的理由; 如果你 他不正确, 那你 需要什么条件,才可以判断 a 是直角?a bdc15. 学 了
13、勾股定理以后,有同学提出 ”在直角三角形中,三 足a 2 +b 2 =c 2 ,或 其他的三角形三 也有 的关系 我. 来做一个 !(1) 画出任意一个 角三角形,量出各 的 度 ( 精确到 1 毫米 ), 短的两条 分 是a=_mm;b=_mm; 的一条 c=_mm.比 a 2 +b 2 =_c 2 ( 填写 , 或” 或, ”=, );(3) 根 据 以 上 的 操 作 和 结 果 , 对 这 位 同 学 提 出 的 问 题 , 你 猜 想 的 结 论是 :_. 你猜想 a2b2与 c2的两个关系,利用勾股定理 明你的 aaacb cbc(3)b(1)(2)16.已知:如 ,在rtabc 中, c=90, abc=60, bc 长为3p,bb l 是 abc 的平分 交 ac 于点 b1, b1作 b 1b2 ab 于点 b 2, b 2作 b2b 3 bc 交 ac 于点 b3, b作 b b ab 于点 b , b作 bb bc 交 ac于点 b , b作 bb ab 于点 b, ,334444555566无限重复以上操作设 b0 =bb l,b1=b 1b 2,b2=b 2b 3,b3=b 3b4 ,b4=b4 b5,bn=bnbn +1, (1) 求 b0, b3 的 ;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(石化)062-2023总烃浓度在线监测仪(氢火焰离子化法)校准规范
- 初中数学第1课时++有理数的乘法课件+北师大版七年级数学上册++
- 暑假培优练:交变电流(学生版)-2025人教版新高二物理暑假专项提升
- 新解读《GB-T 16950-2014地质岩心钻探钻具》
- 突破离子方程式书写正误判断中的“六大陷阱”-高考化学考点复习(解析版)
- 重庆中级课件
- 《英语演讲与辩论》课程介绍与教学大纲
- 社会科学研究方法 课件 第二章 研究的类型
- 蓝牙技术简介
- 老年人应急安全知识培训课件
- 军人压力调试课件
- 幕墙监测监控措施方案(3篇)
- 室内花卉基础知识培训课件
- 2025年湖北省武汉市中考语文试卷(含解析)
- 保障农民工权益的课件
- 2025年excel基础操作测试题及答案
- 变电站建设重点与风险控制措施
- 房屋维护管理办法细则
- 2025年中国远洋渔业行业发展运行现状及投资潜力预测报告
- 卵黄囊瘤影像诊断
- 2025年食品安全员业务培训考试题库(答案+解析)
评论
0/150
提交评论