




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,第二节,一、对坐标的曲线积分的概念 与性质,二、 对坐标的曲线积分的计算法,三、两类曲线积分之间的联系,对坐标的曲线积分,第十一章,一、 对坐标的曲线积分的概念与性质,1. 引例: 变力沿曲线所作的功.,设一质点受如下变力作用,在 xOy 平面内从点 A 沿光滑曲线弧 L 移动到点 B,求移,“大化小”,“常代变”,“近似和”,“取极限”,变力沿直线所作的功,解决办法:,动过程中变力所作的功W.,1) “大化小”.,2) “常代变”,把L分成 n 个小弧段,有向小弧段,近似代替,则有,所做的功为,则,用有向线段,3) “近似和”,4) “取极限”,(其中 为 n 个小弧段的 最大长度),2.
2、 定义.,设 L 为xOy 平面内从 A 到B 的一条有向光滑,弧,若对 L 的任意分割和在局部弧段上任意取点,都存在,在有向曲线弧 L 上,对坐标的曲线积分,则称此极限为函数,或第二类曲线积分.,其中,L 称为积分弧段 或 积分曲线 .,称为被积函数 ,在L 上定义了一个向量函数,极限,若 为空间曲线弧 , 记,称为对 x 的曲线积分;,称为对 y 的曲线积分.,若记, 对坐标的曲线积分也可写作,类似地,3. 性质,(1) 若 L 可分成 k 条有向光滑曲线弧,(2) 用L 表示 L 的反向弧 , 则,则,定积分是第二类曲线积分的特例.,说明:,对坐标的曲线积分必须注意积分弧段的方向 !,二
3、、对坐标的曲线积分的计算法,定理:,在有向光滑弧 L 上有定义且,L 的参数方程为,则曲线积分,连续,证明: 下面先证,存在, 且有,对应参数,设分点,根据定义,由于,对应参数,因为L 为光滑弧 ,同理可证,特别是, 如果 L 的方程为,则,对空间光滑曲线弧 :,类似有,定理,例1. 计算,其中L 为沿抛物线,解法1 取 x 为参数, 则,解法2 取 y 为参数, 则,从点,的一段.,例2. 计算,其中 L 为,(1) 半径为 a 圆心在原点的,上半圆周, 方向为逆时针方向;,(2) 从点 A ( a , 0 )沿 x 轴到点 B ( a , 0 ).,解: (1) 取L的参数方程为,(2)
4、取 L 的方程为,则,则,例3. 计算,其中L为,(1) 抛物线,(2) 抛物线,(3) 有向折线,解: (1) 原式,(2) 原式,(3) 原式,例4. 设在力场,作用下, 质点由,沿 移动到,解: (1),(2) 的参数方程为,试求力场对质点所作的功.,其中 为,例5. 求,其中,从 z 轴正向看为顺时针方向.,解: 取 的参数方程,三、两类曲线积分之间的联系,设有向光滑弧 L 以弧长为参数 的参数方程为,已知L切向量的方向余弦为,则两类曲线积分有如下联系,类似地, 在空间曲线 上的两类曲线积分的联系是,令,二者夹角为 ,例6. 设,曲线段 L 的长度为s, 证明,续,证:,设,说明: 上
5、述证法可推广到三维的第二类曲线积分.,在L上连,例7.,将积分,化为对弧长的积,分,解:,其中L 沿上半圆周,1. 定义,2. 性质,(1) L可分成 k 条有向光滑曲线弧,(2) L 表示 L 的反向弧,对坐标的曲线积分必须注意积分弧段的方向!,内容小结,3. 计算, 对有向光滑弧, 对有向光滑弧,4. 两类曲线积分的联系, 对空间有向光滑弧 :,原点 O 的距离成正比,思考与练习,1. 设一个质点在,处受,恒指向原点,沿椭圆,此质点由点,沿逆时针移动到,提示:,(解见 P196 例5),2. 已知,为折线 ABCOA(如图), 计算,提示:,作业,P198 3 (2), (4), (6), (7) ; 4 ; 5 ; 7 ; 8,第三节,备用题 1.,解:,线移动到,向坐标原点,其大小与作用点到 xOy 面的距离成反比.,沿直,2. 设曲线C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖北恩施州来凤县宏晟工业发展有限公司招聘3人模拟试卷及答案详解(全优)
- 2025江苏苏州市张家港市建安工程机械质量检测有限公司招聘5人模拟试卷含答案详解
- 2025广东中山市三乡镇社区卫生服务中心招聘聘用制医务人员3人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025辽宁抚顺新抚钢有限责任公司招聘拟聘用人员模拟试卷及答案详解(夺冠)
- 2025年铜川市事业单位招聘高层次人才(57人)模拟试卷及参考答案详解1套
- 2025家具供应合同
- 2025年铜川市事业单位招聘高层次人才(57人)模拟试卷及答案详解(考点梳理)
- 2025年芜湖经开区招聘35人模拟试卷(含答案详解)
- 2025广东大塘街招聘辅助人员1人考前自测高频考点模拟试题及答案详解(典优)
- 2025滇西科技师范学院公开招聘硕士研究生及以上和“双师型”教师(19人)模拟试卷及参考答案详解
- 酒水销售技巧培训
- 再生障碍性贫血护理教学查房
- 2025自考专业(国贸)考前冲刺试卷及完整答案详解
- CJ/T 94-2005饮用净水水质标准
- 浙江枧洋高分子科技有限公司年产15000吨无溶剂聚氨酯胶黏剂和5000吨水性胶黏剂、5000吨热熔胶建设项目环评报告
- 运动素质知到课后答案智慧树章节测试答案2025年春浙江大学
- 《急性肝功能衰竭》课件
- 2024年-2025年电梯检验员考试题库及答案
- 挖掘机安全培训教程
- 高中语文++《兼爱》课件+统编版高中语文选择性必修上册
- 学术论文文献阅读与机助汉英翻译智慧树知到答案2024年重庆大学
评论
0/150
提交评论