




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.2.2 组合(一),问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?,问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?,甲、乙;甲、丙;乙、丙,3,情境创设,有 顺 序,无 顺 序,一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,排列与组合的概念有什么共同点与不同点?,概念讲解,组合定义:,组合定义: 一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,排列定义: 一般地,从n个不同
2、元素中取出m (mn) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.,共同点: 都要“从n个不同元素中任取m个元素”,不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.,概念讲解,思考一:ab与ba是相同的排列还是相同的组合?为什么?,思考二:两个相同的排列有什么特点?两个相同的组合呢?,概念理解,构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤.,思考三:组合与排列有联系吗?,判断下列问题是组合问题还是排列问题?,(1)设集合A=a,b,c,d,e,则集合A的含有3个元素的子集有多少个?,(2)某铁路线上有5个车站,则这条铁路线上共
3、需准备多少种车票?,有多少种不同的火车票价?,组合问题,排列问题,(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?,组合问题,(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?,组合问题,(5)从4个风景点中选出2个游览,有多少种不同的方法?,组合问题,(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?,排列问题,组合问题,组合是选择的结果,排列 是选择后再排序的结果.,1.从 a , b , c三个不同的元素中取出两个元素的所有组合分别是:,ab , ac , bc,2.已知4个元素a , b , c , d ,写出每次取出
4、两个元素的所有组合.,ab , ac , ad , bc , bd , cd,(3个),(6个),概念理解,从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示.,如:从 a , b , c三个不同的元素中取出两个元素的所有组合个数是:,如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个 元素的所有组合个数是:,概念讲解,组合数:,注意: 是一个数,应该把它与“组合”区别开来,1.写出从a,b,c,d 四个元素中任取三个元素的所有组合。,abc , abd , acd , bcd .,练一练,组合,排列,abc bac cab
5、acb bca cba,abd bad dab adb bda dba,acd cad dac adc cda dca,bcd cbd dbc bdc cdb dcb,不写出所有组合,怎样才能知道组合的种数?,你发现了什么?,组合数公式,排列与组合是有区别的,但它们又有联系,根据分步计数原理,得到:,因此:,一般地,求从 个不同元素中取出 个元素的排列数,可以分为以下2步:,第1步,先求出从这 个不同元素中取出 个元素的组合数 ,第2步,求每一个组合中 个元素的全排列数 ,这里 ,且 ,这个公式叫做组合数公式,概念讲解,组合数公式:,从 n 个不同元中取出m个元素的排列数,概念讲解,(2)列出
6、所有冠亚军的可能情况.,(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙,(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,解:,例题分析,(4)求,例3,例题分析,例3:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛。按照足球比赛规则,比赛时一个足球队的上场队员是11人。问: (1)这位教练从这17名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?,变式练习,按下列条件,从12人中选出5人,有多少种不同选法? (1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (
7、3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;,例7.(1)平面内有10个点,以其中每2个点为端 点的线段共有多少条?,(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?,例题分析,解:以每2个点为端点的线段的条数,就是从10个不同元素中取出2个元素的组合数,即 由于有向线段的两个端点中一个是起点,一个是终点,以每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即,例3:在100件产品中有98件合格品,2件次品。产品检验时,从100件产品中任意抽出3件。 (1
8、)一共有多少种不同的抽法? (2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种? (4)抽出的3件中至多有一件是次品的抽法有多少种?,说明:“至少”“至多”的问题,通常用分类法或间接法求解。,例8 在100件产品中,有98件合格品,2件次品从这100件产品中任意抽出3件(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?,解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,为 (2)从2件次品中抽出1件次品的抽法有 种,从98件合格品中抽出2件合格品
9、的抽法有 种因此抽出的3件中格有1件是次品的抽法的种数是 (3)抽出的3件中至少有1件是次品的抽法的种数,就是从100件中抽出3件的抽法种数减去3件都是合格品的抽法的种数,即,例8 在100件产品中,有98件合格品,2件次品从这100件产品中任意抽出3件(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?,(3) 第一类:抽出的3件中格有1件是次品的抽法的种数是 第二类:抽出的3件中格有2件是次品的抽法的种数是,抽出的3件中至少有1件是次品的抽法的种数有,课堂练习:,2、从6位同学中选出4位参加一个座谈会,要求张、王
10、两人中至多有一个人参加,则有不同的选法种数为 。,3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为( ),4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有( ),1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有 种 。,9,9,C,D,例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?,解 此题可以转化为:将12个相同的白球分成8份,有多少种不同的分法问题,因此须把这12个
11、白球排成一排,在11个空档中放上7个隔板,每个空档最多放一个,即可将白球分成8份,显然有 种不同的放法,所以名额分配方案有 种.,结论3 隔板法:解决指标分配问题,分析 此题若直接去考虑的话,就会比较复杂.但如果我们将其转换为等价的其他问题,就会显得比较清楚,方法简单,结果容易理解.,例4 袋中有5分不同硬币23个,1角不同硬币10个,如果从袋中取出2元钱,有多少种取法?,解 把所有的硬币全部取出来,将得到 0.0523+0.1010=2.15元,所以比2元多0.15元,所以剩下0.15元即剩下3个5分或1个5分与1个1角,所以共有 种取法.,结论4: 剩余法:在组合问题中,有多少取法,就有多
12、少种剩法,他们是一一对应的,因此,当求取法困难时,可转化为求剩法.,分析 此题是一个组合问题,若是直接考虑取钱的问题的话,情况比较多,也显得比较凌乱,难以理出头绪来.但是如果根据组合数性质考虑剩余问题的话,就会很容易解决问题.,对应法,例7 在100名选手之间进行单循环淘汰赛(即一场 比赛失败要退出比赛),最后产生一名冠军,问要 举行几场?,分析:要产生一名冠军,需要淘汰掉冠军以外的 所有选手,即要淘汰99名选手,淘汰一名选手需要 进行一场比赛,所以淘汰99名选手就需要99场比赛。,例5、9人排成一行,下列情形分别有多少种排法?甲不站排头,乙不站排尾,点评:利用对称的思想, (一)先排甲(特殊
13、元素优先考虑) (二)先排尾位(特殊位置优先考虑) (三)间接法,练习: 用0,1,2,3,4这五个数,组成没有重复 数字的三位数,其中1不在个位的数共有_种。,分析:五个数组成三位数的全排列有 个,0排在首位的 有 个 ,1排在末尾的有 ,减掉这两种不合条件的排 法数,再加回百位为0同时个位为1的排列数 (为什么?) 故共有 种。,甲乙必须排在一起,丙丁不能排在一起,点评:小团体排列问题中,先整体后局部,再结合不相邻问题的插空处理。,甲乙丙从左到右排列(固定顺序问题) 分析:,评:对于某几个元素顺序一定的排列问题, 可先将这几个元素与其它元素一同进行排列, 然后用总的排列数除以这几个元素的全
14、排列数.,引申:有三人从左到右顺序一定,点评:定序问题除法处理,分析:,练习: 有4名男生,3名女生。3名女生高矮互不等, 将7名学生排成一行,要求从左到右,女生从矮到高 排列,有多少种排法?,前排三人,中间三人,后排三人 分析:,引申:前排一人,中间二人,后排六人,点评:分排问题直排处理,练习: 七人坐两排座位,第一排坐3人,第二排坐 4人,则有多少种不同的坐法?,分析:7个人,可以在前后排随意就坐,再无 其他限制条件,故两排可看作一排处理,所以 不同的坐法有 种.,分成甲、乙、丙三组,甲组4人,乙组3人,丙组2人。 分析:,引申:分成甲、乙、丙三组,一组4人,一组3 人, 一组2人 分析:
15、,分成甲、乙、丙三组,每组3人。 分析:,分成三组,每组3人 分析:,引申:分成三组,一组5人,另两组各两人 分析:,点评:局部均分无序问题易出错,实验法(穷举法),题中附加条件增多,直接解决困难时,用实验逐步寻求规律有时也是行之有效的方法。,例 将数字1,2,3,4填入标号为1,2,3,4的四个方格内,每个方格填1个,则每个方格的标号与所填的数字均不相同的填法种数有( ),A.6 B.9 C.11 D.23,分析:此题考查排列的定义,由于附加条件较多,解法较为困难,可用实验法逐步解决。,第一方格内可填2或3或4。如填2,则第二方格中内可填1或3或4。,若第二方格内填1,则第三方格只能填4,第
16、四方格应填3。,若第二方格内填3,则第三方格只能填4,第四方格应填1。,同理,若第二方格内填4,则第三方格只能填1,第四方格应填3。因而,第一格填2有3种方法。,不难得到,当第一格填3或4时也各有3种,所以共有9种。,练 习 (不对号入座问题),(1)(2004湖北)将标号为1,2,3,10的 10个球放入标号为1,2,3,10的10个盒子中, 每个盒内放一个球,恰好有3个球的标号与其所在盒子 的标号不一致的放入方法有_种,(2)编号为1、2、3、4、5的五个球放入编号为1、2、3、4、5的五个盒子里,至多有2个对号入座的情形有_种,109,直接法:,间接法:,例8、高二(1)班从7人中选4人
17、组成4100m接力赛其中甲乙二人不跑中间两棒,有多少种选法?,点评:排列组合综合题的解法应遵循在分类的基础上,先组合后排列的原则,分类与分步相结合,分类时做到不重复不遗漏.,练习:(徐州二检)从6人中选4人组成4100m接力赛,其中甲跑第一棒,乙不跑最后一棒,有多少种选法? 分析:(一)直接法 (二)间接法,48,例9、从正方体的6个面中任选3个,其中2个面不相邻的选法有多少种?,练习:从正方体的8个顶点中选4个作四面体,则不同的四面体的个数为 。,58,练习:(南通一检)一个三位数,其十位上的数字既小于百位上的数字也小于个位上的数字(如,等),那么这样的三位数有 个,285,练习1 某人射击8枪,命中4枪,那么命中的4枪中恰有3枪是连中的情形有几种?,练习2 一排8个座位,3人去坐,每人两边至少有一个空座的坐法有多少种?,练习3 马路上有编号为1,2,3,10的十只路灯,为节约电而不影响照明,可以把其中的三只路灯关掉,但不能同时关掉相邻的两只或三只,也不能关掉马路两端的灯,问满足条件的关灯方法有多少种?,练习4 A、B、C、D、E五人站成一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腰椎间盘突出合并马尾综合征护理查房
- 桡骨远端骨折合并腕管综合征护理查房
- 2020年1月国开电大法律事务专科《行政法与行政诉讼法》期末纸质考试试题及答案
- 广西南宁市第十中学2025年春季学期高一年级历史第21课战时共产主义到斯大林模式同步测试卷
- 社区美篇消防知识培训课件
- 宁夏银川市2024-2025学年高一下学期期末地理试卷(含答案)
- 小车挂靠公司合同范本
- 读书合同范本模板
- 现在的装修合同范本
- 墙体修复合同范本
- 2024年中考英语考纲词汇重点单词800词(复习必背)
- 高中物理第八章 静电场专题复习
- 电力电缆及通道检修规程QGDW 11262-2014(文字版)
- (完整版)常见中药材和中药饮片造假、掺假现象及鉴别方法
- 协同育人机制:家校社联动的实践逻辑与路径
- 《乡村治理理论与实践》课件第五章 乡村治理的机制
- 2020年7月26日河北省委政法委遴选考试真题及答案
- 亲子关系断绝书格式
- 《我国老年电视节目研究》
- 车辆抵顶合同范例
- 十八项医疗核心制度
评论
0/150
提交评论