




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、小学五年级下册数学知识点汇总3篇精品文档,仅供参考PERSONAL 小学五年级下册数学知识点汇总3篇小学五年级下册数学知识点汇总3篇1 第一单元 简易方程 1、等式:表示相等关系的式子叫做等式。 2、方程:含有未知数的等式是方程。 3、方程一定是等式。等式不一定是方程。 4、等式的性质:等式两边同时加上或减去同一个数,所得结果仍然是等式。 5、方程的解:使方程左右两边相等的未知数的值。 6、解方程:求方程中未知数的过程。 7、检验 【例 检验法一:把x=10代入原方程, 左边=60-410=20, 右边=20, 左边=右边, 所以,X=10是原方程的解。 检验法二:方程左边=60-410=20
2、=方程右边 所以,X=10是方程的解 8、解方程时常用的关系式 一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差 一个因数=积÷另一个因数 除数=被除数÷商 被除数=商除数 9、列方程解应用题的思路 (1)审题并弄懂题目的已知条件和所求问题。 (2)理清题目的等量关系。 (3)设未知数,一般是把所求的数用X表示。 (4)根据等量关系列出方程 (5)解方程 (6)检验 (7)作答。 注意:解完方程,要养成检验的好习惯。 第二单元 折线统计图 1、复式折线统计图的特点 从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比
3、较。 2、作复式折线统计图步骤 写标题和统计时间 注明图例(实线和虚线表示) 分别描点、标数 实线和虚线的区分(画线用直尺)。 注意:先画表示实线的统计图,再画虚线统计图。不能同时描点画线,以免混淆。 第三单元 因数和公倍数 1、因数和倍数 几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。因数与倍数是相互依存绝不能孤立的存在。 (1)一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。 (2)一个数最小的倍数是它本身,没有最大的倍数。 (3)一个数倍数的个数是无限的。 (4)一个数最大的因数等于这个数最小的倍数。 (5)2 的倍数的特征:个位是0、2、4
4、、6、8。 5的倍数的特征:个位是0或5。 3 的倍数的特征:各位上数字的和一定是3的倍数。 2、奇数和偶数 按照是否是2的倍数可以把自然数分成两类偶数和奇数。 最小的偶数是0。 3、公因数和最大公因数 两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数。 (1)A和B两个数的最大公因数常用(A,B)表示。 (2)两个数的公因数是有限的。 (3)公因数只有1的两个数叫作互质数 4、公倍数和最小公倍数 两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小公倍数。 (1)A和B两个数的最小公倍数常用符号A,B表示。 (2)两个数的公倍数是无限的。
5、 (3)两个数的最小公倍数一定是它们的最大公因数的倍数。 5、两个素数的积一定是合数 6、求最大公因数和最小公倍数的方法 (1)列举法 (2)图示法 (3)短除法 7、质因数:如果一个数的因数是质数,这个因数就是它的质因数。 8、分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。 第四单元 分数的意义和性质 1、分数的意义 一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。 2、单位1 一个物体、一个计量单位或是一些物体等都可以看作一个整体。一个整体可以用自然数1来表示,我们通常把它叫做单位1。 3、分数单位: 把单位1平均分成
6、若干份,表示其中一份的数叫做分数单位。 4、分数与除法的关系 A÷B=(B≠0,除数不能为0,分母也不能够为0)。 5、真分数、假分数和带分数 (1)分子比分母小的分数叫真分数。真分数1。 (2)分子比分母大或分子和分母相等的分数叫假分数。假分数1 (3)带分数由整数和真分数组成的分数。带分数1. (4)真分数1≤假分数 真分数1带分数 6、假分数与整数、带分数的互化 (1)假分数化为整数或带分数:用分子÷分母,商作为整数,余数作为分子。 (2)整数化为假分数:用整数乘以分母得分子。 (3)带分数化为假分数:用整数乘以分母加分子,得数就是假分数的分子,分
7、母不变。 (4)1等于任何分子和分母相同的分数。 7、分数的基本性质 分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。 8、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。 (1)几个数的公因数只有1,就说这几个数互质。 (2)求两个数的最大公因数的方法 列举法、筛选法、短除法、分解质因数法 (3)最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。 9、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 (1)求两个数的最小公倍数的方法 列举法、筛选法、短除法、分解质因数法 10
8、、约分和通分 (1)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (2)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。 11、分数和小数的互化 (1)小数化为分数: 数小数位数,一位小数,分母是10;两位小数,分母是100 (2)分数化为小数: 分母是10、100、1000的分数,可以直接化成小数。 也可以用分子÷分母。 如:3/4=3÷4=0.75 12、比分数的大小 分母相同,分子大,分数就大; 分子相同,分母小,分数才大。 第五单元 分数的加法和减法 1、分数加法和减法的意义 分数加、减法的意义和整数加、减法的意义相同。
9、2、 同分母分数加、减法的计算 分母不变,分子相加、减。计算的结果能约分的要约分成最简分数。 3、异分母分数加、减法的计算 先通分,然后按照通分母分数加、减法进行计算。 4、分数加减混合运算 没有括号的,按照从左往右的顺序计算;有括号的,先算括号里面的,再算括号外面的。 5、分数加法的简算 整数加法的运算定律和在分数加法中同样适用。 第六单元 圆 一、圆 1、圆是由一条曲线围成的平面图形。 2、画圆 (1)针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。 (2)用圆规画圆的过程:先两脚叉开,再
10、固定针尖,最后旋转成圆。 画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。 3、圆的直径和半径 (1)在同一个圆里,有无数条半径和直径。 (2)在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。 (3)在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2) 6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。 7、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。 用字母π(读pài)表示。 π是一个无限不循环小数,π=3.141
11、592653 我们在计算时,一般保留两位小数,取它的近似值3.14。 8、圆的周长 如果用C表示圆的周长,那么C=πd或C = 2πr 9、圆的面积推导 圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=c/2=πr)。 即:S长方形= a b S圆 = πr r= 注意:切拼后的长方形的周长比圆的周长多了两条半径。 C长方形=2πr+2r=C圆+d 10、圆的面积 如果用S圆表示圆的面积,那么S圆=πr2。圆的面积是半径平方的π倍。 二、扇形 扇形是由圆心角的两
12、条半径和圆心角所对的弧围成的图形。扇形的大小是由圆心角决定的。 第七单元 解决问题的策略 1、运用转化的策略可以把不规则的图形转化成规则的图形,转化前后图形变化了,但大小不变。 2、计算小数的除法时,可以把小数转化成整数来计算。 3、在计算异分母分数加、减时,可以把异分母分数装化成同分母分数来计算。 4、在进行面积公式推导时,可以把图形转化成已经学过的图形面积来计算。 5、运用转化的策略,从不同的角度灵活的分析问题,可以使复杂的问题简单化。小学五年级下册数学知识点汇总3篇2 知识重点 1、计算 小数乘法,小数除法,简易方程,观察物体,多边形的面积,统计与可能性,数学广角和数学综合运用等。 在前
13、面学习整数四则运算和小数加、减法的基础上,继续培养学生小数的四则运算能力。 2、方程 用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。 3、空间与物体 在空间与图形方面,这一册教材安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,能辨认从不同方位看到的物体的形状和相对位置。 4、图形的转换 探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,
14、促进学生空间观念的进一步发展。 5、统计与概率 教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性。 6、平均数 理解平均数和中位数各自的统计意义、各自的特征和适用范围;进一步体会统计和概率在现实生活中的作用。 7、实际应用 通过观察、猜测、实验、推理等活动向学生渗透初步的数字编码的数学思想方法,体会运用数字的有规律排列可以使人与人之间的信息交换变得安全、有序、快捷,给人们的生活和工作带来便利,感受数学的魅力。 必考应用题 1、一辆摩托车和一辆货车同时从两站相对开出,摩托车每小时行驶29.5千米,货车每小时行驶7
15、0.5千米,经过2.7小时两车相遇。两车站之间的公路长多少千米? 2、将一根铁丝剪成两段,第一段长38.7米,第二段比第一段长度的1.5倍短6.8米。第二段有多长? 3、甲数是560,乙数是70,甲数给乙数多少后,甲数是乙数的4倍? 4、一个房间的长是12米,宽是10米。现用每块0.64平方米的瓷砖铺地面,至少需要多少块瓷砖? 5、非洲鸵鸟奔跑的速度是每小时72km,比野兔的2倍少12km,野兔的奔跑速度是每小时多少千米? 6、张老师给学校买了8个足球和4个排球,每个足球65元,张老师一共花了700元,每个排球多少元? 7、一个长方形铁丝框的长是8米,周长是28米。 (1)这个铁丝框的宽是多少
16、米? (2)如果将这个铁丝框改成正方形,这个正方形铁丝框的边长是多少米? 8、汽车每小时行45千米,摩托车每小时行60千米。它们分别从甲、乙两地同时开出相向而行,4小时后相遇,相遇后两车继续前行,则摩托车到达甲地还需行几小时? 9、小兔子采蘑菇,晴天每天能采36只,雨天每天只能采24只,它一连几天共采了288只蘑菇,平均每天采32只。这些天中有多少天是雨天? 10、一种瓶装速溶咖啡粉净重600克,每冲一杯咖啡需要9克咖啡粉和2.5克方糖。这瓶咖啡粉最多可以冲多少杯咖啡? 11、两辆汽车同时从甲地开往乙地,其中一辆汽车每小时行52.5千米,2.8小时到达乙地;这时另一辆汽车离乙地14千米。若两辆
17、汽车同时分别从甲乙两地相向而行,大约几小时相遇?(得数保留一位小数) 12、一间教室长8.5米,宽4.5米。用每块0.25平方米的瓷砖铺地面,一共要用多少块瓷砖? 13、一筐苹果,连筐共重33.5千克,卖掉一半后,连筐称还有18.15千克。原有苹果多少千克?筐重多少千克? 14、某粮仓有172.48吨大米,5辆卡车7次运走全部大米,平均每辆卡车每次运大米约是多少吨?(得数保留两位小数) 15、五位同学有同样多的存款,在每一次捐款中,每人捐出16元后,五位同学剩下的钱正好等于原来3人的存款数。原来每位同学有存款多少元? 16、甲乙两城相距263.2千米,一辆客车2.8小时行完全程,一辆货车3.5
18、小时行完全程。客车的速度比货车的速度快多少? 17、小明买了5千克梨和5千克苹果共付33.5元,小芳买了4千克梨和5千克苹果共付31元。每千克苹果和每千克梨各多少元? 18、一个正方形的周长是9.48米,它的边长是多少米? 19、一辆汽车每小时行驶5千米要用汽油0.8千克。如果汽车现有汽油50千克,要行驶325千米,需要加油吗? 20、饲养场有鸡3600只,比鸭的只数的5倍还多120只。饲养场有鸭多少只? 21、有两袋大米,甲袋大米的重量是乙袋的1.2倍。如果从甲袋往乙袋倒5千克大米,两袋就一样重。原来两袋大米各是多少千克? 22、做8个大铁盒和6个小铁盒,共用白铁皮8.8平方米。每个大铁盒用
19、白铁皮0.8平方米,每个小铁盒用白铁皮多少平方米? 23、学校远有篮球、排球共21个,现又买来若干个足球。小刚发现,篮球比买来的足球多5个,排球比买来的足球少4个。求学校买来多少个足球? 24、李小燕买了5千克苹果和6千克橘子,共付21.6元。已知苹果的单价是橘子的1.2倍,李晓燕买苹果和橘子各需付多少钱? 25、飞机每小时飞行1000千米,比火车速度的12倍还多40千米。火车每小时行驶多少千米? 26、商店运来28筐苹果和24筐梨,一共重1180千克。已知每筐苹果重25千克,没筐梨重多少千克? 27、师徒二人合作一批零件,原计划8天完成。后来,师傅因为有特殊任务只做了6天,结果徒弟比原计划多
20、做了3天。任务完成时,师父比徒弟少做了100个。已知徒弟每天做50个零件,师傅每天做多少个? 28、甲桶有油85千克,乙桶有油58千克。从甲筒倒入乙桶多少千克油,两桶里的油正好相等? 29、有同样多的黑、白棋子各一盒。如果每次取出4个黑棋子、3个白妻子,黑棋子被取完时,还剩16个白棋子。黑、白棋子各有多少个? 30、小红买了3个本子和5支铅笔,共付了7.6元。每个本子1.2元,每支铅笔多少元? 31、青山果园有桃树450棵,比杏树的2倍还多50棵。杏树有多少棵? 32、一个工人计划做38个零件,已经做了4个小时,每小时做5个,剩下的3小时做完,平均每小时做多少个? 小学五年级下册数学知识点汇总
21、3篇3 第一单元 分数加减法 一、分数的意义 1、分数的意义:把单位1平均分成若干份,表示这样的一份或几份的数,叫做分数。 2、分数单位:把单位1平均分成若干份,表示这样的一份的数叫做分数单位。 二、分数与除法的关系,真分数和假分数 1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。 2、真分数和假分数: 分子比分母小的分数叫做真分数,真分数小于1。 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。 由整数部分和分数部分组成的分数叫做带分数。 3、假分数与带分数的互化: 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。 把带分
22、数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。 三、分数的基本质 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。 四、分数的大小比较 同分母分数,分子大的分数就大,分子小的分数就小; 同分子分数,分母大的分数反而小,分母小的分数反而大。 异分母分数,先化成同分母分数(分数单位相同),再进行比较。(依据分数的基本性质进行变化) 五、约分(最简分数) 1、最简分数:分子和分母只有公因数1的分数叫做最简分数。 2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。 (并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最
23、简分数为止) 注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。 六、分数和小数的互化: 1、小数化分数:将小数化成分母是10、100、1000;的分数,能约分的要约分。具体是:看有几位小数,就在1后边写几个0做分母,把小数点去掉的部分做分子,能约分的要约分。 2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。(一般保留三位小数。) 如果分母只含有2或5的质因数,这个分数能化成有限小数。如果含有2或5以外的质因数,这个分数就不能化成有限小数。 3、分数和小数比较大小:一般把分数变成小数后比较更简便。 七、分数的加法和减法 1、分数方程的计算方法与整数方程的计算方法一致,在计
24、算过程中要注意统一分数单位。 2、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。在计算过程,整数的运算律对分数同样适用。 3、同分母分数加、减法 :同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。 4、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。 第二单元 长方体(一) 1、认识长方体、正方体,了解各部分的名称。 (1) 表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。 (2) 左面的面叫左面,右面的面叫右面,上面的面
25、叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。 (3) 长方体有12条棱,这12条棱中有4条长、4条宽和4条高。正方体的12条棱的长度都相等。 (4)正方体是特殊的长方体。因为正方体可以看成是长、宽、高都相等的长方体。 (5)长方体的棱长总和=(长+宽+高)4=长4+宽4+高4 长方体的宽=棱长总和÷4-长-高 长方体的长=棱长总和÷4-宽-高 长方体的高=棱长总和÷4-宽-长 正方体的棱长总和=棱长12 正方体的棱长=棱长总和÷12 2、展开与折叠 (正方体展开共11种) 第一类:141 型 6个 第二类:231
26、型 3个 第三类:222 型(楼梯形)1个 第四类:3-3 型 1个 注意:(1)田字型与凹字型的全错。 (2)正方体展开至少和最多都只剪开7条棱。 3、长方体的表面积 (1)表面积的意义:是指六个面的面积之和。 (3)长方体的 表面积=长宽2 +长高2 +宽高2 =(长宽+长高+宽高)2 (4)正方体的表面积=棱长棱长6 4、露在外面的面 (1)在观察中,通过不同的观察策略进行观察。 如:一种是看每个纸箱露在外面的面,再加到一起; 另一种是分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。 例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是
27、多少? 解:首先应找出有多少个面露在外面: 如果用法一的方法来找:3+1+2+3=9(个); 如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(个)。 因为每个面都是面积相等的正方形,所以露在外面的面积=10109=900(厘米2) 答:露在外面的面积一共是900平方厘米。 (2)发现并找出堆放的正方体的个数与露在外面的面的面数的变化规律。 (3)求露在外面的面的面积=棱长棱长露在外面的面的个数。 3 第三单元 分数乘法 分数乘法(一)知识点: (1)理解分数乘整数的意义:分数乘整数意义同整数乘法意义相同,就是求几个相同加数的和的简便运算。 (2
28、)分数乘整数的计算方法:分母不变,分子和整数相乘的积作分子。能约分的要约成最简分数。 (3)计算时,应该先约分再计算。 分数乘法(二) 知识点 : (1) 整数乘分数的意义:求一个数的几分之几是多少。 (2) 理解打折的含义。例如:九折,是指现价是原价的十分之九。 补充知识点: 打几折就是指现价是原价的百分之几,例如八五折,是指现价是原价的百分之八十五。 现价=原价折扣 原价=现价÷折扣 折扣=现价÷原价 买一赠一打几折: 出一个的钱拿两个货品,即 1除以2等于零点五,五折 买三赠一打几折: 出三个的钱拿四个货品,即 3除以4等于零点七五,七五折 分数乘法(三) 知
29、识点: 1、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的可以先约分。(结果是最简分数。) 2、比较分数相乘的积与每一个乘数的大小: 真分数相乘积小于任何一个乘数; 真分数与假分数相乘积大于真分数小于假分数。 乘数乘以1的数,积乘数; 乘数乘以=1的数,积=乘数; 乘数乘以1的数,积乘数; 3、求一个数的几分之几是多少,用乘法。(即已知整体和部分量相对应的分率,求部分量,用乘法) 4、倒数 (1)如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 (2)当互为倒数的两个数分别作为长方形的长和宽时,长方形的面积是1。 (3)1的倒
30、数仍是1;0没有倒数。0没有倒数,是因为0不能作除数。 (4)求一个数的倒数的方法:把这个数的分子、分母调换位置;其中整数可以看成分母是1的分数。 4 第四单元 长方体(二) 一、体积与容积概念 体积:物体所占空间的大小叫作物体的体积。(从外部测量) 容积:容器所能容纳入体的体积叫做物体的容积。(从内部测量) 注意:同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。如果容器壁忽略不计时,容积等于体积。 几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化) 二、体积单位 1、认识体积、容积单位 常用的体积单位:立方米(m³)、立方分米(dm³)、立
31、方厘米(cm³) 常用的容积单位:升、毫升,1升=1立方分米、1毫升=1立方厘米 2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义: 手指头、苹果、火柴盒体积较小,可用cm³作单位 西瓜、粉笔盒体积稍大,可以用dm³作单位 矿泉水瓶、墨水瓶可以用毫升作单位 热水瓶等较大盛液体容器、冰箱可以用升作单位 我们饮用的自来水用立方米作单位 三、长方体的体积 1、长方体、正方体体积的计算方法 长方体的体积=长宽高,长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh 正方体的体积=棱长棱长棱长,如果棱长用a表示,体积可表示为V=a&su
32、p3;=aaa 长方体(正方体)的体积=底面积高 V=Sh 补充知识点:长方体的体积=横截面面积长 2、能利用长方体(正方体)的体积及其他两个条件求出问题。 如:长方体的高=体积÷长÷宽 长=体积÷高÷宽 宽=体积÷高÷长 注意:计算体积时,单位一定要统一; 表面积与体积表示的意义不一样,单位不同,无法比较大小。 四、体积单位的换算 认识体积、容积单位。 常用的体积单位有:立方厘米(cm³)、立方分米(dm³) 、立方米(m³)。 常用的容积单位有:升(L)、毫升(m L) 知识点
33、: 1、体积、容积单位之间的进率:相邻体积、容积单位间进为1000 1米³=1000分米³ 1分米³=1000厘米³ 1升=1分米³ 1毫升=1厘米³ 1升=1000毫升 2、体积、容积单位之间的换算方法: 体积、容积单位之间的换算,由高级单位化成低级单位乘进率,由低级单位化成高级单位除以进率 五、有趣的测量 1、不规则物体体积的测量方法: 一般都是把不规则物体的体积转化成可通过测量计算的水的体积(注意液面是升高了还是升高到) 注意:在测量体积较小的不规则物体的体积时,要先测量出一定数量物体的体积,再算出一个物体的体积 2、不规则物体
34、体积的计算方法:现在液体体积减去原来液体体积 5 第五单元 分数除法 一、分数除法(一) 分数除以整数的意义及计算方法。分数除以整数,就是求这个数的几分之几是多少。 分数除以整数(0除外)等于乘这个数的倒数。 二、分数除法(二) 1、一个数除以分数的意义和基本算理:一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。 2、一个数除以分数的计算方法: 除以一个数(0除外)等于乘这个数的倒数。 3、比较商与被除数的大小。 除数小于1,商大于被除数; 除数等于1。商等于被除数; 除数大于1,商小于被除数。 三、分数除法(三) 1、列方程求一个数的几分之几是多少的方法: (1)
35、解方程法:设未知数,这里的单位1未知,所以设单位1为x,再根据分数乘法的意义列出等量关系式解这个方程。 (2)算术方法:用部分量除以它所占整体的几分之几 (对应量÷对应分率=标准量) 2、判断单位1: 一般来说,某个数的几分之几,某个数就是单位1 数比谁多几分之几或少几分之几,比字后面的数量就是单位1 谁是谁的几分之几,是字后面的数量就是单位1 四、倒数 1、理解倒数的意义: 如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。倒数是对两个数来说的,并不是孤立存在的。 2、求倒数的方法:把这个数的分子和分母调换位置。 3、1的倒数仍是1;0没有倒数。(0没有倒数,是因为在分数中,0不能做分母。) 6 第六单元 确定位置 确定位置(一)知识点 1、 认识方向与距离对确定位置的作用。 2、 能根据方向和距离确定物体的位置。 3、 能描述简单的路线图。 确定位置(二)知识点 了解确定物体位置的方法。 能根据平面图确定图中任意两地的相对位臵(以其中一地为观察点,度量另
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 征信合规管理培训课件
- 语言培训班课件制作指南
- 急性乳房炎的护理
- 感恩团队培训
- 中医嗳气病例分享
- 气道异物的护理
- 仓库管理的安全培训
- 新教师法培训
- 小学国教育主题班会
- 天津市2025年中考语文模拟试卷7(含答案)
- GB/T 22751-2008台球桌
- GA 1205-2014灭火毯
- “十个坚持”的逻辑体系与深刻内涵
- 携手耕耘未来课件
- 社区工作者经典备考题库(必背300题)
- 2023年陕西韩城象山中学高一物理第二学期期末联考试题(含答案解析)
- DB4401-T 102.1-2020 建设用地土壤污染防治+第1部分:污染状况调查技术规范-(高清现行)
- 农业产业园可行性研究报告
- 实验2:基本数据类型、运算符与表达式
- 常州建筑水电安装施工专项方案
- 增强教师职业认同感、荣誉感、幸福感-课件
评论
0/150
提交评论