学士学位论文—-基于matlab的蒙特卡洛方法对可靠度的计算_第1页
学士学位论文—-基于matlab的蒙特卡洛方法对可靠度的计算_第2页
学士学位论文—-基于matlab的蒙特卡洛方法对可靠度的计算_第3页
学士学位论文—-基于matlab的蒙特卡洛方法对可靠度的计算_第4页
学士学位论文—-基于matlab的蒙特卡洛方法对可靠度的计算_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、薦ASouthwestJiaotong University基于MATLA酌蒙特卡洛方法对可靠度的计算可靠性工程大作业SOUTHWEST JIAOTONG UNIVERSITY目录目录2摘要3绪论4一、 编写 MONTE CARLO莫拟程序 5二、 关于两个服从正态分布的可靠性验证 8三、 非正态分布的验证 10四、 总结11参考文献 129摘要对于简单的概率计算,我们可以用离散或者连续的概率分布模型进行求解; 但是对于复杂的模型的近似解的求解,蒙特卡洛方法是一种非常方便的方法。蒙 特卡洛方法将最复杂的计算部分交给了电机计算机来完成,极大的方便了我们的 求解过程。本文主要是用MATLABS写蒙

2、特卡洛的模拟程序,然后分别验证两个正态分布 的模型和两个非正态分布的模型。非正态分布的模型中的随机变量序列都是独立同分布的,这样我们可以方便的用列维-林德伯格中心极限定理进行处理【关键字】:复杂模型、蒙特卡洛、MATLAB正太分布、独立同分布的非正态模型、列维-林德伯格中心极限定理绪论计算机技术的发展,促进了蒙特卡洛方法的推广、普及以及完善等。蒙特卡洛 方法诞生之初是不被重视的,因为当时的计算机技术没有达到与之匹配的程度。蒙特卡洛模拟也称为随机模拟方法, 或随机抽样技术。它是一种以概率论和数 理统计为基础,通过对随机变量的统计实验、随机模拟来求解问题近似解的数值 方法。它的主要思想是:为了求解

3、数学、物理、化学及工程问题,建立一个概率 模型或随机过程,使它的参数等于问解;然后通过对模型或过程的观察或抽样来 计算所求参数的统计特征(如均值、概率等),作为待解问题的数值解,最后给出 所求解的近似值,而解的精度可用估计值的方差来表示。蒙卡洛模拟的步骤是: 首先建立简单而又便于实现的概率分布模型,使分布模型的某些特征(如模型的 概率分布或数学期望)恰好是所求问题的解;然后根据概率分布模型的特点和计 算的需要改进模型,以便减少方差,降低费用,提高计算效率;再对分布模型进 行随机模拟,其中包括建立产生伪随机数的方法和建立对所遇到的分布产生随机 变量样本的随机抽样方法;最后建立各种统计量的估计,获

4、得所求解的统计估计 值及其方差。蒙特卡洛模拟方法可分为直接蒙特卡洛模拟、间接蒙特卡洛模拟和 蒙特卡洛积分。(1)直接蒙特卡洛模拟采用随机数来模拟本身具有复杂随机过程的效应。该方法是按照实际问题所遵循的概率统计规律,用计算机进行直接的抽样,然后计算其 统计参数。直接蒙卡洛模拟法能充分体现蒙特卡洛方法的特殊性和优越性,因而 在物理中得到了广泛的应用,该方法也就是通常所说的“计算机实验”。(2)间接蒙特卡洛模拟是人为地构造出一个合适的概率模型,依照该模型进行大量的统计实验,使它的某些统计参数恰好是待求问题的解。Buffon投针实验就是运用间接蒙特卡洛模拟来求解n。(3) 蒙特卡洛积分是利用随机数系列

5、计算积分的方法,积分维数越高,效率越高。 定积分的计算是蒙特卡洛方法被引入计算数学的开端,这里以定积分的计算说明 其处理确定性问题的方法。如计算定积分:1s = k 0 f (x)dx 0 _ f (x) _ 1此时,求定积分亦即求边长为1的正方形中一个曲边梯形的面积问题,如图 2所 示。可以随机地向正方形内投点,然后统计落在曲线下的点数 M,当总的投点N 充分大时,kM/N就近似等于积分值s。一、编写Monte Carlo模拟程序1. 模型的建立本章节根据抛掷骰子编制Monte Carlo模拟程序,验证各点出现的概率均为1/6。2. 模拟流程图绘制图1.1流程图3. Monte Carlo程

6、序编写Monte Carlo 模拟程序(Matlab)clearN=1000000;K_仁0;K_2=0;K_3=0;K_4=0;K_5=0;K_6=0;K=ra ndi(6,N,1); for i=1:Nif K(i,1)=1K_仁K_1+1;endif K(i,1)=2 K_2=K_2+1; endif K(i,1)=3 K_3=K_3+1; endif K(i,1)=4 K_4=K_4+1; endif K(i,1)=5 K_5=K_5+1; endif K(i,1)=6 K_6=K_6+1; endendP 1=K 1/NP_2=K_2/NP_3=K_3/NP_4=K_4/NP_5=K

7、_5/NP_6=K_6/N hist(K,6)4 模拟结果及结论Monte Carlo 模拟得到,P_1=16.639% ;P_2=16.605%;P_3=16.712%;P_4=16.710%;P_5=16.625%;P_6=16.710% 各项约为总数的 1/6,符合理论情况。通过模拟可以得到分布直方图(图1.2)。123456图1.2分布直方图二、关于两个服从正态分布的可靠性验证机械结构的可靠性设计中的应力-强度干涉理论的理论计算和采用蒙的卡罗方法对其进行验证。MATLAB自带有产生正态分布的随机数, 所以我们用MATLAB对N=100000实验次数进行验证。计算次数为 3次。4 4理论

8、计算:首先根据可靠度 R=0.999,可得可靠度系数Z= _=3.191,工S 二L2然后我们确定应力Xl (正态分布)的参数,均值4 l=200,方差 L =5776;然后2 再确定强度Xs (正太分布)的参数,均值 s=50,方差匚S =3062.71。流程图的绘制图2.1流程图Matlab模拟:由理论计算的正态分布的参数进行matlab的模拟,得出的可靠度如下图:R 二0. 9992300000000000. 9993000000000000. 999250000000000A程序如下:N=100000;P=0,0,0;R=0.0,0.0,0.0;for j=1:3%N(500,55.3

9、4)%N(200,76)S=n ormrnd(500,55.34,N,1);L=n ormrnd(200,76,N,1);for i=1:Nz=S(i,1)-L(i,1);if z0P(j)=P(j)+1;endendR(j)=P(j)/Nend三、非正态分布的验证对于非正态分布的强度-应力随机变量的可靠度计算,我们再MATLAB上用蒙 的卡罗方法来验证。验证时我们取样本值 n=100000,分别验证强度服从期望为1011(及启一)指数分布(x0时,概率密度为0)和应力服从期望为5 (及)105指数分布(x0时,概率密度为0)。所得的可靠度如下图:Hi R 0P(j)=P(j)+1;endendR(j)=P(j)/n;end11鹫PSOUTHWEST JIAOTONG UNIVERSITY四、总结根据强度-应力干涉模型求解系统的可靠度,对于强度和应力都服从正态分布 的干

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论