高等数学11-5,6 傅里叶级数_第1页
高等数学11-5,6 傅里叶级数_第2页
高等数学11-5,6 傅里叶级数_第3页
高等数学11-5,6 傅里叶级数_第4页
高等数学11-5,6 傅里叶级数_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、fourier series,第五、六节 傅里叶(fourier)级数,一、问题的提出 二、三角函数系的正交性 三、函数展开成傅里叶级数 四、正弦级数或余弦级数 五、周期为2l的函数的傅里叶级数 六、傅里叶级数的复数形式 七、小结,上一节详细研究了一种重要的函数项级数,幂级数,下面研究另一种重要的函数项级数,这种级数是由于研究周期现象的需要而,产生的,它在通讯、电工、力学和许多学科中,都有很重要的应用,傅里叶,级数,1757年,法国数学家克莱罗在研究太阳引起的摄动时,1759年,拉格朗日在对声学的研究中也使用了三角级数,大胆地采用了,历史朔源,三角级数表示函数,在自然界和人类的生产实践中,周而

2、复始的现象、周期运动是常见的,谐函数,简谐波,简谐振动,正弦型函数,一、问题的提出,如矩形波,不同频率正弦波,除了正弦函数外,常遇到的是非正弦周期函数,较复杂的周期现象,逐个叠加,分解,设想,反映在数学上,谐波分析,或再利用三角恒等式变形为,即,三角级数,为简便计,先来讨论以 为周期的函数 f(x,解决上述问题起着关键作用的是,三角函数系的正交性(orthogonality,三角函数系,二、三角函数系的正交性,正交性,orthogonality,1.傅里叶系数 (fourier coefficient,两边积分,则,希自己证明,傅里叶系数,由这些系数作成的三角级数,称为函数 f(x)(诱导出)

3、的傅里叶级数,f(x),f(x)的傅里叶级数不见得收敛,即使收敛,级数的和也不一定是 f(x,不能无条件的,下面的傅里叶级数收敛定理回答了我们,所以,把符号“,它的傅里叶级数收敛,记为,当 f(x)满足什么条件时,并收敛于f(x)本身,换为“,2. 狄利克雷(dirichlet)充分条件,收敛定理,逐段光滑,当x是f (x)的连续点时,当x是f (x)的间断点时,当 时,傅氏级数的和函数与函数f(x)的关系,由定理可知,1)函数展开成傅里叶级数的条件比展开成,常说把 f (x)在 上展开成傅氏级数,2) 要注明傅氏级数的和函数与函数f (x)相等,幂级数的条件低得多,的区域,设函数 f (x)

4、以 为周期, 且,其傅氏级数在 处收敛于(,练习,解,可以将f (x)展开为傅氏级数,因为,所以,其傅氏级数在 处收敛于(,设函数f(x)以 为周期,且,北方交大考题 95级, (6分,为周期的傅氏级数的和函数s(x)在 上的,解,s(x),练习,表达式,周期函数的傅里叶级数解题程序,并验证是否满足狄氏条件,画图目的: 验证狄氏条件,由图形写出收敛域,易看出奇偶性可减少求系数的工作量,2) 求出傅氏系数,3) 写出傅氏级数,并注明它在何处收敛于f (x,1) 画出 f (x)的图形,解,u(t)的图象,计算傅里叶系数,奇,奇,将其展开为傅氏级数,并按狄利克雷定理写出此级数的和,例,为周期的矩形

5、脉冲的波形,偶,故u(t)的傅里叶级数为,由于u(t)满足狄利克雷充分条件,所以,得,解,傅里叶系数,例1,将 f (x) 展开为傅里叶级数,f (x) 的图象,故 f (x)的傅里叶级数,由于f (x)满足狄利克雷充分条件,由收敛定理得,上有定义,3) f(x)可展为傅氏级数,作 法,对于非周期函数,如果 f (x)只在区间,上有定义,并且满足狄氏充要条件,也可展开成,傅氏级数,1) f (x) 在,周期延拓,级数收敛于,周期延拓,解,例2 将函数,展开为傅氏级数,作周期延拓,验证条件,傅里叶系数,偶函数,奇函数,所求函数的傅氏展开式为,利用傅氏展开式求级数的和,98 (a,填空题 (3分,

6、已知级数 则级数 的和,等于,解,所以,练习,由奇函数与偶函数的积分性质,系数的公式,易得下面的结论,和傅里叶,此时称傅里叶级数为,sine series,正弦级数,sine series and cosine series,四、正弦级数和余弦级数,它的傅里叶系数为,此时称傅里叶级数为,将函数展为傅里叶级数时,先要考查函数,是非常有用的,是否有奇偶性,cosine series,余弦级数,它的傅里叶系数为,解,所给函数满足狄利克雷充分条件,奇函数,设 f (x)是周期为 的周期函数,它在,例3,上的表达式为,将 f (x)展开成傅氏级数,f (x)的图形,正弦级数,解,函数的图形如图,电学上称

7、为,偶函数,例4,展为傅里叶级数,锯齿波,余弦级数,例 在无线电设备中,常用电子管整流器将交流电转换为直流电.已知电压,t为时间,试将e(t)展为傅氏级数,解,在整个数轴上连续,偶函数,所给函数满足狄利克雷充分条件,n为奇数,n为偶数,n=1时也对,奇延拓,偶延拓,两种,正弦级数,偶函数,奇函数,余弦级数,因而展开成,因而展开成,上有定义,作法,3. f(x)可展开为傅氏级数, 这个级数必定是,得到 f (x)的正弦级数 的展开式,偶函数,的奇函数,正弦级数,余弦级数,余弦级数,其实也不必真正实施这一手续,满足收敛定理的条件,1. f (x)在,2. 在开区间,内补充定义,得到定义在,上的函数

8、f(x,使它成为 在上,解,1) 求正弦级数,奇延拓,正弦级数,分别展开成正弦级数和余弦级数,例5,2) 求余弦级数,会指定到底展成余弦级数,还是正弦级数(不唯一,余弦级数,偶延拓,上有定义的函数,设函数,1) 把f (x) 展开为正弦级数,2) 求级数的和函数s(x)在,解,练习,1,上的表达式,级数的和函数s(x)的周期为,如图所示,从图上看更明显,2) 求级数的和函数s(x)在,上的表达式,解,解,五、以2l为周期的傅氏级数,代入傅氏级数中,则有,则有,典型例题,解,解,解,试 题 链 接,六、复数形式的傅里叶级数,基本概念(三角级数、三角函数系的正交性,函数展开成傅里叶级数(傅里叶系数、 傅里叶级数 、按狄利克雷收敛定理写出傅里叶级数的和,傅里叶级数的意义 整体逼近,七、小结,函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论