另辟蹊径解决二次函数中平行四边形存在性问题_第1页
另辟蹊径解决二次函数中平行四边形存在性问题_第2页
另辟蹊径解决二次函数中平行四边形存在性问题_第3页
另辟蹊径解决二次函数中平行四边形存在性问题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、另辟蹊径 解决二次函数中平行四边形存在性问题以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决由于先要画出草图,若考虑不周,很容易漏解为此,笔者另辟蹊径,借 助探究平行四边形顶点坐标公式来解决这一类题.1 两个结论,解题的切入点数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。1.1线段中点坐标公式平面直角坐标系中,点

2、A坐标为(xi,yi),点B坐标为(X2, y2),则线段AB的中点坐标为(xiX2 yiy2)2 2证明如图1,设AB中点P的坐标为(Xp,yp). 由 XP-X1=X2-XP,得X1X2XP=同理上y2,所以线段AB的中点坐标为(2X1X221.2平行四边形顶点坐标公式2 ABCD 的顶点坐标分别为 A(Xa, yA)、B(xb, yB)、C( xc, yc)、D(xd, yD),则:xa+xc=xb+xd;yA+yc=y B+yD.证明: 如图2,连接AC、BD,相交于点E.点E为AC的中点, E点坐标为(,江上). 2 2又点E为BD的中点,E点坐标为(汇虽,叵旦).2 2二 Xa+x

3、c=x b+xd ; yA+yc=yB+yD.即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.2 一个基本事实,解题的预备知识图2如图3,已知不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A、B、C、D为顶点的四边形是平行四边形答案有三种:以 线的口ABCD2,以BC为对角线的DABD3C .3 两类存在性问题解题策略例析与反思AB为对角线的 口ACBD1,以AC为对角3.1三个定点、一个动点,探究平行四边形的存在性问题1 例1已知抛物线y=x2-2x+a(av 0)与y轴相交于点 A,顶点为 M.直线y= - x-a分别与x轴、y轴相交于B、C两点,并且与直线 AM相交于点

4、N.(1)填空:试用含a的代数式分别表示点 M与N的坐标,贝U M( ), N();(2)如图4,将厶NAC沿y轴翻折,若点N的对应点N 恰好落在抛物线上,AN与x轴交于点D,连接CD,求a的值和四边形 ADCN的面积;(3) 在抛物线y=x2-2x+a(av 0 )上是否存在一点 P,使得以P、A、C、N为顶点的四边 形是平行四边形?若存在,求出点 P的坐标;若不存在,试说明理由解:(1)M(1,a-1),N( 4 a , - - a ) ; (2)a=-E ; S 四边形 adcn= 189 ;33416(3)由已知条件易得当以AC为对角线时,41cA(0, a)、C(0,-a)、N(_a

5、,-_a).设 P( m, m2-2m+a).3(解题时熟练推导出)-.43由平行四边形顶点坐标公式,得:4a m31 2 _ a m 2m352158,-5);8当以AN为对角线时,40 a31 a a3a m2 2m52 (不合题意,158舍去当以CN为对角线时,40 a 0 m31a a3a m2 2m-238二 p2(-2,78).5在抛物线上存在点Pq5)和8P2(-17,7),使得以P、A、C、N为顶点的四边形是平行四边形反思:已知三个定点的坐标,可设出抛物线上第四个顶点的坐标,运用平行四边形顶点坐标公式列方程(组)求解这种题型由于三个定点构成的三条线段中哪条为对角线不清楚, 往往

6、要以这三条线段分别为对角线分类,分三种情况讨论 3.2两个定点、两个动点,探究平行四边形存在性问题例2如图5,在平面直角坐标系中,抛物线 A(-1, 0), B(3,0), C(0(1) 求该抛物线的表达式;(2) 点Q在y轴上,点P在抛物线上,要使以点Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标解:(1)易求抛物线的表达式为y= - x2 x 1 ;33图5(2)由题意知点Q在y轴上,设点Q坐标为(0, t);点P在抛物线上,设点P坐标为(m, 1 m2-m 1).33尽管点Q在y轴上,也是个动点,但可理解成一个定点,这样就转化为三定一动了. 当以AQ为对角线时,由四个

7、顶点的横坐标公式得:-1+0 = 3+m ,m=-4,. Pi(-4, 7); 当以 BQ 为对角线时,得:-1+m=3+0,. m=4, P2(4, 5);3 当以 AB 为对角线时,得:-1+3=m+ 0,. m=2, P3( 2, -1).5综上,满足条件的点 P为P1(-4, 7)、P2(4,三)、P3(2, -1).3反思:这种题型往往特殊,一个动点在抛物线上,另一个动点在 x轴(y轴)或对称轴 或某一定直线上设出抛物线上的动点坐标,另一个动点若在x轴上,纵坐标为0,则用平行四边形顶点纵坐标公式;若在y轴上,横坐标为0,则用平行四边形顶点横坐标公式.该动点哪个坐标已知就用与该坐标有关

8、的公式.本例中点Q的纵坐标t没有用上,可以不设.另外,把在定直线上的动点看成一个定点,这样就转化为三定一动了,分别以三个定点构成的 三条线段为对角线分类,分三种情况讨论例3如图6,在平面直角坐标系中,已知抛物线经过A(-4, 0), B(0, -4), C(2, 0)三点.(1) 求抛物线的解析式;(2) 若点M为第三象限内抛物线上一动点,点M的横坐标为, AMB的面积为S.求S关于m的函数关系式,并求出 S的最大值;(3) 若点P是抛物线上的动点,点 Q是直线y=-x上的动点,判断有几个位置能使以 点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.1解:(1 )易求抛物线

9、的解析式为y= x2+x-4;2(2) s=-m2-4m( -4m0) ; s 最大=4 (过程略);(3)尽管是直接写出点Q的坐标,这里也写出过程.由题意知0(0,0)、B(0, -4).1由于点Q是直线y=-x上的动点,设 Q(s, -s),把Q看做定点;设 P(m, - m2+m-4).- Q1(-2+2 5,2-2 5 ),Q2(-2-2 5,2+2 .5);图62当以OQ为对角线时,0s0 m,1 20s4m m 42 S=-22.5.当以BQ为对角线时,0 m 0 s1 20 m m 44 s2二 Sl=-4, S2= 0(舍).Q3( -4, 4);当以OB为对角线时,0 0 s m0 4 s m2 m 42si = 4, s2= 0(舍).Q4(4, -4).综上,满足条件的点 Q 为 Qi(-2+2.、5 ,2-2、5 )、Q2(-2-2.、5 , 2+2. 5 )、Q3(-4, 4)、Q4(4,-4).反思:该题中的点Q是直线y=-x上的动点,设动点Q的坐标为(s,-s),把Q看做定点, 就可根据平行四边形顶点坐标公式列方程组了4 问题总结这种题型,关键是合理有序分类:无论是三定一动,还是两定两动,统统把抛物线上的 动点作为第四个动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论