


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版八年级数学上册知识点归纳7知识点一: 三角形第十一章三角形1、定义:由不在同一条直线上的三条线段顺次首尾相接所组成的图形叫做三角形。2、分类:(1)按角分:锐角三角形;直角三角形;钝角三角形;(2)按边分:不等边三角形;等腰三角形;等边三角形;3、角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。4、中线:连接一个顶点与对边中点的线段叫做三角形的中线。5、高:从三角形的一个顶点向它的对边作垂线,顶点与垂足之间的线段叫做三角形的高。注意:三角形的角平分线、中线和高都有三条。6、三角形的三边关系:三角形的任意两边的和大于第三边,任意两边的差
2、小于第三边。7、三角形的内角:三角形的内角和等于180o 。如图: 1+ 2 + 3 = 180o28、三角形的外角413(1) 三角形的一个外角与相邻的内角互补。1+ 4 = 180o(2) 三角形的一个外角等于与它不相邻的两个内角的和。4 = 2 + 3(3) 三角形的一个外角大于任何一个与它不相邻的内角。4 2 或4 36、三角形的周长、面积求法和三角形稳定性。(1) 如图 1:cabc=abbcac 或cabc= abc。四个量中已知其中三个能求第四个。(2) 如图 2:ad 为高,sabc = bcad三个量中已知其中两个能求第三个。(3) 如图 3:abc 中,acb=90,cd
3、为 ab 边上的高,则有:sabc =abcd=acbc 即:abcd=acbc四条线段中已知其中三条能求第四条。知识点二:多边形及其内角和1、 n 边形的内角和=180o (n - 2);2、 n 边形的外角和= 360o 。3、一个 n 边形的对角线有 n(n - 3)条,过 n 边形一个顶点能作出(n - 3)条对角线,把 n 边2形分成了(n - 2)个三角形。第十二章:全等三角形12.1 全等三角形(1) 形状、大小相同的图形能够完全重合;(2) 全等形:能够完全重合的两个图形叫做全等形;(3) 全等三角形:能够完全重合的两个三角形叫做全等三角形;(4) 平移、翻折、旋转前后的图形全
4、等;(5) 对应顶点:全等三角形中相互重合的顶点叫做对应顶点;(6) 对应角:全等三角形中相互重合的角叫做对应角;(7) 对应边:全等三角形中相互重合的边叫做对应边;(8) 全等表示方法:用“ ”表示,读作“全等于”(注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上)(9) 全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等;12.2 三角形全等的判定(1) 若满足一个条件或两个条件均不能保证两个三角形一定全等;(2) 三角形全等的判定:三边对应相等的两个三角形全等;(“边边边”或“ss”s)两边和它们的夹角对应相等的两个三角形全等;(“边角边”或“sas”)两角和
5、它们的夹边对应相等的两个三角形全等;(“角边角”或“asa”)两角和其中一角的对边对应相等的两个三角形全等;(“角角边”或“aas”)斜边和一条直角边对应相等的两个直角三角形全等;(“斜边直角边”或“hl”)(3) 证明三角形全等:判断两个三角形全等的推理过程;(4) 经常利用证明三角形全等来证明三角形的边或角相等;(5) 三角形的稳定性:三角形的三边确定了,则这个三角形的形状、大小就确定了;(用“sss”解释)12.3 角的平分线的性质(1) 角的平分线的作法:课本第 19 页;(2) 角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;(3) 证明一个几何中的命题,一般步骤:明确命
6、题中的已知和求证;根据题意,画出图形,并用数学符号表示已知和求证;经过分析,找出由已知推出求证的途径,写出证明过程;(4) 性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;(利用三角形全等来解释)(5) 三角形的三条角平分线相交于一点,该点为内心;第十三章:轴对称13.1 轴对称(1) 轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么就称这个图形是轴对称图形;这条直线叫做它的对称轴;也称这个图形关于这条直线对称;(2) 两个图形关于这条直线对称:一个图形沿一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折
7、叠后重合的点是对应点,叫做对称点;(3) 轴对称图形与两个图形成轴对称的区别:轴对称图形是指一个图形沿对称轴折叠后这个图形的两部分能完全重合;而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合;(4) 轴对称图形与两个图形成轴对称的联系:把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称;把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。(5) 垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;(6) 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(7) 轴对称图形的对称轴,是任何一对对应
8、点所连线段的垂直平分线;(8) 对称的两个图形是全等的;(9) 垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的距离相等;(10) 逆定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;(11) 垂直平分线的尺规作图:书 p3513.2 作轴对称图形(1) 作轴对称图形:分别作出原图形中某些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;(注意取特殊点)(2) 点(x , y)关于 x 轴对称的点的坐标为:(x , -y);点(x , y)关于 y 轴对称的点的坐标为:(-x , y);13.3 等腰三角形(1) 等腰三角形的性质:等腰三角形的两个底角
9、相等(“等边对等角”);等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;(2) 等腰三角形是轴对称图形,三线合一所在直线是其对称轴;(只有 1 条对称轴)(3) 等腰三角形的判定:如果一个三角形有两条边相等;如果一个三角形有两个角相等,那么这两个角所对的边也相等;(等角对等边)(4) 等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形)(5) 等边三角形的性质:等边三角形的三个内角都是 60等边三角形的每条边都存在三线合一;(6) 等边三角形是轴对称图形,对称轴是三线合一所在直线;(有 3 条对称轴)(7) 等边三角形的判定:三条边都相等的三角形是等边三角形;三个角都相
10、等的三角形是等边三角形;有一个角是 60的等腰三角形是等边三角形;(8) 在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半;第十四章: 整式的乘除与因式分解14.1 整式的乘法(1) 同底数幂的乘法: am + an = am+n (m,n 都是正整数) 即:同底数幂相乘,底数不变,指数相加;(2) 幂的乘方: (am )n = amn (m,n 都是正整数)即:幂的乘方,底数不变,指数相乘;(3) 积的乘方: (ab)n = anbn (n 是正整数)即:积的乘方,等于把积的每一个因式分别乘方,再把所得幂相乘;(4) 整式的乘法:单项式与单项式相乘,把它们的系数、相同
11、字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;14.2 乘法的公式(1) 平方差公式: (a + b)(a - b)= a2 - b2即:两个数的和与这两个数的差的积,等于这两个数的平方差;(2) 完全平方公式: (a + b)2 = a2 + 2ab + b2(a - b)2 = a2 - 2ab + b2即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍;(3) 添括号:如果括号前面是
12、正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;14.3 整式的除法(1)同底数幂的除法: am an = am-n (a0 , m , n 都是正整数,并且 mn) 即:同底数幂相除,底数不变,指数相减;(2)规定: a0 = 1(a 0)即:任何不等于 0 的数的 0 次幂都等于 1;(3)整式的除法:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则把连同它的指数作为商的一个因式;多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得商相加;14.4 因式分解(1) 因式分解:把一个多项式化成几个整式的积的形式的变
13、形叫做因式分解;(也叫做把这个多项式分解因式);(2) 公因式:多项式的各项都有的一个公共因式;(3) 因式分解的方法:提公因式法:关键在于找出最大公因式因式分解:公式法平方差公式:a -b =(a + b)(a - b)完全平方公式:(a + b) = a + 2ab +b(a - b) = a + 2ab +b5、分式有无意义只与分母有关:当分母0 时,分式有第十五章分式知识点总结6、7、总结列分式方程应注意的问题意义;当分母=0 时,分式无意义。“”“”at the end, xiao bian gives you a passage. minand once said, people
14、who learn to learn are very happy people. in every wonderful life, learning is an eternal theme. as a professional clerical and teaching position, i understand the importance of continuous learning, life is diligent, nothing can be gained, only continuous learning can achieve better self. only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up w
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国魔芋胶项目投资计划书
- 2025年中国能源用酶项目创业计划书
- 2025年中国升白制剂项目创业计划书
- 情景教学法在小学英语课堂教学中的运用
- 2025年中国水冲石料项目创业投资方案
- 廊坊市中医院内部往来款项核对与清理流程试题
- 石家庄市人民医院按摩器械操作考核
- 2025年中国氢化聚葵烯项目商业计划书
- 晋中市人民医院血液净化副主任医师评审
- 邯郸市中医院脊柱畸形后路截骨矫形技术准入考核
- 2025海参滋补趋势洞察报告
- DB32∕T 3812-2020 建筑同层排水工程技术规程
- 银行柜台人员手语课件
- 2025年高级会计师考试(高级会计实务)新版真题卷(附详细解析)
- 省委消防安全知识培训课件
- 乐刻培训课件
- 2024年少先队大队委竞选笔试题(含答案)
- 现代教育技术课程总结
- 2025中国银河证券股份有限公司校园招聘笔试参考题库附带答案详解(10套)
- 瑞幸咖啡新零售品牌招商手册【餐饮】【咖啡连锁】【招商加盟】
- 活动设计:当我成为家长时-小学生亲子关系主题心理活动课
评论
0/150
提交评论