




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解题技巧,如图,得 解得:a= ,r= 故最小半径为r= 故选:D,1.如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为() A B C D,解题技巧,2.如图,正方形ABCD与正三角形AEF的顶点A重合,将AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,BAE的大小是,四边形ABCD是正方形,BAD=90,AB=AD, AEF是等边三角形,AE=AF,EAF=60,分两种情况: 如图,当正AEF在正方形ABCD内部时, 在ABE和ADF中, ABEADF(SSS), BAE=DAF= (9060)=15 如图,当正AEF在正方形ABCD外部时, 在ABE和A
2、DF中, ABEADF(SSS), BAE=DAF= (36090+60)=165 故答案为:15或165,解题技巧,3.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx3k+4与O交于B、C两点,则弦BC的长的最小值为,直线y=kx3k+4=k(x3)+4, k(x3)=y4, k有无数个值,x3=0,y4=0,解得x=3,y=4, 直线必过点D(3,4), 最短的弦CB是过点D且与该圆直径垂直的弦, 点D的坐标是(3,4),OD=5, 以原点O为圆心的圆过点A(13,0), 圆的半径为13,OB=13, BD=12,BC的长的最小值为24; 故答案为:24,解题
3、技巧,4.在RtABC中,ACB=90,AC=1,BC= ,点O为RtABC内一点,连接A0、BO、CO,且AOC=COB=BOA=120,按下列要求画图(保留画图痕迹):以点B为旋转中心,将AOB绕点B顺时针方向旋转60,得到AOB(得到A、O的对应点分别为点A、O),并回答下列问题: ABC=,ABC=,OA+OB+OC,C=90,AC=1,BC= tanABC= AC/BC= ABC=30, AOB绕点B顺时针方向旋转60, AOB如图所示; ABC=ABC+60=30+60=90 C=90,AC=1,ABC=30, AB=2AC=2,解题技巧,AOB绕点B顺时针方向旋转60,得到AOB
4、, AB=AB=2,BO=BO,AO=AO, BOO是等边三角形, BO=OO,BOO=BOO=60, AOC=COB=BOA=120, COB+BOO=BOA+BOO=120+60=180, C、O、A、O四点共线, 在RtABC中,AC= OA+OB+OC=AO+OO+OC=AC= 故答案为:30;90,解题技巧,5.如图所示,O半径为2,弦BD=2 ,A为弧BD的中点,E为弦AC的中点,且在BD上,求四边形ABCD的面积,连接OA交BD于点F,连接OB, OA在直径上且点A是弧BD中点, OABD,BF=DF= 在RtBOF中,由勾股定理得OF2=OB2BF2, OF=1 OA=2AF=
5、1SABD= 点E是AC中点 AE=CE 又ADE和CDE同高SCDE=SADE AE=EC,SCBE=SABE SBCD=SCDE+SCBE=SADE+SABE=SABD= S四边形ABCD=SABD+SBCD=2,解题技巧,6.已知等腰RtABC与等腰RtCDE,ACB=DCE=90,把RtABC绕点C旋转 (1)如图1,当点A旋转到ED的延长线时,若BC= ,BE=5,求CD的长; (2)当RtABC旋转到如图2所示的位置时,过点C作BD的垂线交BD于点F,交AE于点G,求证:BD=2CG,解题技巧,1)如图1,ADC是由BEC绕点C旋转得到的, AD=BE=5,ADC=BEC, 在等腰RtABC与等腰RtCDE中,BC=AC, EDC=DEC=45,AB=13,ADC=BEC=135, AEB=90,AE=12,DE=7, 等腰RtCDE中,CD= DE= (2)如图2,过点A作AHCE,交CG的延长线于H, 连接HE,则CAH+ACE=180, ACB=DCE=90,BCD+ACE=180, CAE=BCD,CFBD,ACB=90, CBF+BCF=ACG+BCF=90,CBF=ACG, 在BCD和CAH中, BCDCAH(ASA), AH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通银行2025乌海市秋招群面案例总结模板
- 中国银行2025黄山市秋招无领导模拟题角色攻略
- 2025湿地保护行业技术与市场分析
- 农业银行2025咸阳市金融科技岗笔试题及答案
- 农业银行2025湘潭市秋招笔试EPI能力测试题专练及答案
- 销售岗位有期限劳动合同4篇
- 交通银行2025湘西土家族苗族自治州秋招笔试性格测试题专练及答案
- 农业银行2025玉林市秋招群面案例总结模板
- 交通银行2025咸宁市数据分析师笔试题及答案
- 建设银行2025益阳市小语种岗笔试题及答案
- 朝阳河流域生态修复综合治理工程环评报告
- 2025年汽车租赁公司车辆托管及运营管理合同
- 2024新版2025秋教科版科学二年级上册全册教案教学设计
- (2025秋新版)人教版八年级历史上册全册教案
- 企业向个人还款合同范本
- 钢模板安全知识培训课件
- 2025-2026学年人民版小学劳动技术六年级上册教学计划及进度表
- 新学期三年级班主任工作计划(16篇)
- 接种疫苗预防流感课件
- 游戏体验寻规律(教学设计)-2024-2025学年人教版(2024)小学信息技术五年级全一册
- 基于plc的恒压供水控制系统设计
评论
0/150
提交评论