北师大版七年级数学(上册)知识点和关键习题_第1页
北师大版七年级数学(上册)知识点和关键习题_第2页
北师大版七年级数学(上册)知识点和关键习题_第3页
北师大版七年级数学(上册)知识点和关键习题_第4页
北师大版七年级数学(上册)知识点和关键习题_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、北师大版七年级数学 ( 上册 ) 知识点和关键习题前言: 七年 上知 点很 ;主要是 接作用;很多知 点在六年 涉及 ; 在是 六年 的加深与拓展. 重点 点章 有三个:第二章有理数及其运算、第三章整式及其加减、第五章一元一次方程.第一章丰富的 形世界 注:本 元两个易 点:1、 形的展开与折叠2、“ 三 ”判断 形个数1、几何 形从 物中抽象出来的各种 形;包括立体 形和平面 形.立体 形:有些几何 形的各个部分不都在同一平面内;它 是立体 形 .平面 形:有些几何 形的各个部分都在同一平面内;它 是平面 形 .2、生活中的立体 形 柱柱生活中的立体 形球棱柱:三棱柱、 四棱柱( 方体、正方

2、体)、五棱柱、( 按名称分 )锥圆锥棱 3、点、 、面、体( 1)几何 形的 成点: 和 相交的地方是点;它是几何 形中最基本的 形. :面和面相交的地方是 ;分 直 和曲 .1 / 27面:包围着体的是面;分为平面和曲面.体:几何体也简称体.( 2)点动成线;线动成面;面动成体.4、常见的几何体及其特点长方体:有 8 个顶点; 12 条棱; 6 个面;且各面都是长方形.(正方形是特殊的长方形);正方体是特殊的长方体.棱柱: 上下两个面称为棱柱的底面;其它各面称为侧面;长方体是四棱柱 .棱锥:一个面是多边形;其余各面是有一个公共顶点的三角形.圆柱: 有上下两个底面和一个侧面(曲面) ;两个底面

3、是半径相等的圆 .圆柱的表面展开图是由两个相同的圆形和一个长方形连成 .圆锥: 有一个底面和一个侧面(曲面) . 侧面展开图是扇形;底面是圆 .球:由一个面(曲面)围成的几何体.5、棱柱及其有关概念:棱:在棱柱中;任何相邻两个面的交线;都叫做棱.侧棱:相邻两个侧面的交线叫做侧棱.n 棱柱有两个底面;n 个侧面;共( n+2)个面; 3n 条棱; n 条侧棱;2n 个顶点 .6、正方体的平面展开图:11 种3 3 型22 2型2 / 27 律:一 不 四;田凹 弃之;相 、 z 端是 面; 二、拐角 面知.7、截一个正方体:用一个平面去截一个正方体;截出的面可能是三角形;四 形;五 形;六 形.

4、可能出 的: 角三角型、等 、等腰三角形;正方形、矩形、非矩形的平行四 形、非等腰梯形、等腰梯形、五 形、六 形、正六 形不可能出 : 角三角形、直角三角形、直角梯形、正五 形、七 形或更多 形其他几何体的截面形状:正方体:三角形、正方形、 方形、梯形、五 形、六 形 柱: 、 方形、(正方形)、 : 、三角形、球:圆8、三 物体的三 指主 、俯 、左 .主 :从正面看到的 ;叫做主 .左 :从左面看到的 ;叫做左 .3 / 27俯视图:从上面看到的图;叫做俯视图.第二章有理数及其运算备注: 1* 、数轴是新知识很多地方用到2* 、去绝对值与绝对值的几何意义很重要;有些学生在去绝对值和利用绝对

5、值几何意义做题时比较容易出错(去绝对值的主要数学思想是“分情况讨论”这也是贯穿初高中的一个重要数学思想)3* 、有理数混合运算中去去括号变号很多同学容易在这块丢分.1、有理数的分类整数和分数统称为有理数. 因为有限小数和无限循环小数可以化为分数;所以把有限小数和无限循环小数都看作分数.正有理数整数有理数零有限小数和无限循环小数或有理数负有理数分数2、相反数: 只有符号不同的两个数叫做互为相反数;零的相反数是零在数轴上;表示互为相反数的两个点;位于原点的两侧;且与原点的距离相等 .相反数是成对出现的;不能单独存在;单独的一个数不能说是相反数 .3、数轴:规定了原点、正方向和单位长度的直线叫做数轴

6、(画数轴时;要注意上述规定的三要素缺一不可). 任何一个有理数都可4 / 27以用数轴上的一个点来表示. 解题时要真正掌握数形结合的思想;并能灵活运用 .4、倒数: 如果 a 与 b 互为倒数;则有 ab=1;反之亦成立 . 倒数等于本身的数是 1 和 -1. 零没有倒数 .5、绝对值: 在数轴上;一个数所对应的点与原点的距离;叫做该数的绝对值 . ( |a| 0). 零的绝对值时它本身;也可看成它的相反数;若 |a|=a ;则 a 0;若 |a|=-a ;则 a 0.绝对值的有关性质对任意有理数a;都有 |a| 0;若 |a|=0 ;则 a=0;若 |a|=|b|;则 a=b 或 a= b;

7、若 |a|=b ( b0);则 a=b;若 |a| |b|=0 ;则 a=0 且 b=0;对任意有理数a;都有 |a|=|a|.6、有理数比较大小:正数大于零;负数小于零;正数大于一切负数;数轴上的两个点所表示的数; 右边的总比左边的大; 两个负数;绝对值大的反而小 .7、有理数的运算:( 1)五种运算:加、减、乘、除、乘方多个数相乘; 积的符号由负因数的个数决定;当负因数有奇数个时;积的符号为负;当负因数有偶数个时;积的符号为正. 只要有一个数为零;积就为零.有理数加法法则:同号两数相加;取相同的符号;并把绝对值相加.异号两数相加;绝对值值相等时和为0;绝对值不相等时;取绝对值较大的加数的符

8、号;并用较大的绝对值减去较小的绝对值.5 / 27一个数同0 相加;仍得这个数.互为相反数的两个数相加和为0.有理数减法法则:减去一个数;等于加上这个数的相反数!有理数乘法法则:两数相乘;同号得正;异号得负;并把绝对值相乘.任何数与0 相乘;积仍为0.有理数除法法则:两个有理数相除;同号得正;异号得负;并把绝对值相除.0 除以任何非0 的数都得0.注意: 0 不能作除数 .有理数的乘方:求 n 个相同因数a 的积的运算叫做乘方.a2 是重要的非负数;即a2 0;若 a2+|b|=0则 a=0,b=0 ;据规律底数的小数点移动一位;平方数的小数点移动二位 .注意:一个数可以看作是本身的一次方;如

9、5=51;当底数是负数或分数时;要先用括号将底数括上;再在右上角写指数 .乘方的运算性质:正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;任何数的偶数次幂都是非负数;(除 0 以外任何数的0 次方都得1) 1 的任何次幂都得1; 0 的任何次幂(除0 次)都得 0; -1 的偶次幂得1; -1 的奇次幂得 -1 ;在运算过程中;首先要确定幂的符号;然后再计算幂的绝对值.( 2)有理数的运算顺序6 / 27先算乘方; 再算乘除; 最后算加减; 如果有括号; 先算括号里面的.( 3)运算律加法交换律加法结合律乘法交换律乘法结合律abba( ab)ca(bc)abba( ab)ca(

10、bc)乘 法 对 加 法 的 分 配 律abaca (bc)a(b c) ab ac变 形 公 式8、科学记数法一般地;一个大于10 的数可以表示成的形式;其中;n 是正整数;这种记数方法叫做科学记数法. ( n=整数位数 -1 )第三章整式及其加减备注:这章算是这册比较难的一个知识点. 一是对单项式、多项式的理解;其次是对同类项的理解和计算.容易出错的地方大多在化简计算;有几点:1、是化简计算过程中去括号变号.2、化简求值中“整体思想”的运用.3、化简计算中一个字母表示另个字母代入换算.知识点一、字母表示数1、字母可以表示任何数;用字母表示数的运算律和公式法则;1 加法交换律a加法结合律ab

11、 ( )bb acab c2 乘法交换律abba乘法结合律()a(bc)ab c乘法分配律 ()a bcab ac7 / 27用字母表示计算公式:1 长方形的周长2(a b) , 面积 ab( a、b 分别为长、宽)2 正方形的周长4a;面积 a2( a 表示边长)3 长方体的体积abc;表面积 2ab 2bc 2ac(a、b、c 分别为长、宽、高)4 正方体的体积a3, 表面积 6a2( a 表示棱长)25 圆的周长 2r,面积 r( r 为半径)6 三角形的面积1 ah( a 表示底边长; h 表示底边上的高)22、在同一问题中;同一字母只能表示同一数量;不同的数量要用不同的字母表示.3、

12、用字母表示实际问题中某一数量时;字母的取值必须使这个问题有意义;并且符合实际.4、注意书写格式的规范:(1) 表示数与字母或字母与字母相乘时乘号;乘号可以写成“”;但通常省略不写;数字与数字相乘必须写乘号;(2) 数和字母相乘时;数字应写在字母前面;(3) 带分数与字母相乘时;应把带分数化成假分数;(4) 除法运算写成分数形式 ;分数线具 “ ”号和“括号”的双重作用 .(5) 在代数式的运算结果中;如有单位时;结果是积或商直接写单位;结果是和差加括号后再写单位 .典型例题 :例题 1. 有一大捆粗细均匀的钢筋;现要确定其长度; 先称出这捆钢筋的总质量为m千克;再从中截取5 米长的钢筋;称出它

13、的质量为n 千克;那么这捆钢筋的总长度为()米8 / 27mmn5m5ma、 nb、 5c 、 5d 、 ( n 5)例题 2. 用代数式表示“ 2a与 3 的差”为()a 2a 3 b 3 2a c 2( a3)d2( 3a)例题 3. 如图 131;轴上点a 所表示的是实数a;则到原点的距离是()a、 ab ac ad |a|111例题 4. 已知 a=20 x+20 ; b=20 x+19 ; c= 20 x+21 ;那么代数式a2+b2+c2ab bcac 的值为()a、 4b、 3c、 2d 、1练习 :1、温度由 t 下降 3后是 _.飞机每小时飞行a 千米;火车每小时行驶b 千米

14、;飞机的速度是、 2火车速度的 _倍 .3、无论 a 取什么数;下列算式中有意义的是()a. 、 1b. 1c.1 a1d.1a 1a22a 14、全班同学排成长方形长队;每排的同学数为a;排数比每排同学数的 3 倍还多 2;那么全班同学数为()a.a 3a2b.a (3a2)c.a3a2d.3a ( a2)5、轮船在 a、b 两地间航行;水流速度为m 千米时;船在静水中的速度为n 千米时; 则轮船逆流航行的速度为_千米时6、甲、乙、丙三家超市为了促销一种定价均为 x 元的商品;甲超市连续两次降价 20%;乙超市一次性降价 40%;丙超市第一次降价30%;第二次降价10%;此时顾客要想购买这种

15、商品最划算;应到的9 / 27超市是()( a)甲(b)乙( c)丙( d)乙或丙7、下列说法中: a 一定是负数; | a | 一定是正数; 若 abc0 ;则 a、 b、c 三个有理数中负因数的个数是0 或 2;其中正确的序号是8、设三个连续整数的中间一个数是n , 则它们三个数的和是9、设三个连续奇数的中间一个数是x , 则它们三个数的和是10、设 n 为自然数;则奇数表示为;偶数表示为;能被 5 整除的数为;被 4 除余 3 的数为二、代数式1、代数式:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式. 如: n-2、 0.8a 、2n +500

16、、abc、 2ab+2bc +2ac(单独一个数或一个字母也是代数式)注意: 代数式中除了含有数、字母和运算符号外;还可以有括号;代数式中不含有“ =、 、”等符号 . 等式和不等式都不是代数式;但等号和不等号两边的式子一般都是代数式;代数式中的字母所表示的数必须要使这个代数式有意义;是实际问题的要符合实际问题的意义.代数式的书写格式:代数式中出现乘号;通常省略不写;如vt ;数字与字母相乘时;数字应写在字母前面;如 4a;带分数与字母相乘时;应先把带分数化成假分数;如2 1a 应写作37 a ;3数字与数字相乘;一般仍用“”号;即“”号不省略;在代数式中出现除法运算时;一般写成分数的形式;如

17、410 / 27(a-4 )应写作4;注意:分数线具有“”号和括号的双重作用.a4在表示和(或)差的代数式后有单位名称的;则必须把代数式括起来;再将单位名称写在式子的后面;如例:下列不是代数式的是()(a 2b2 ) 平方米 .a. 0b . sc . x 1d . x 0.1y2t2、单项式:表示数与字母的积的形式的代数式叫单项式. 单独一个数或一个字母也是单项式. 其中的数字因数(连同符号)叫单项式的系数;所有的字母的指数的和叫单项式的次数.注意: 1. 单独的一个数或一个字母也是单项式;2. 单独一个非零数的次数是 0;3. 书写时;当单项式的系数为 1 或 -1 时;这个“ 1”应省略

18、不写;如-ab 的系数是 -1 ; ab 的系数是 1.4. 是数字;不是字母 .例: ab2 的系数是;如 x2 的系数是;如 1x22的系数是;3、多项式:几个单项式的和叫多项式. 多项式中;每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数.例:代数式 5x yx2x 1 有项;第二项的系数是;第三项的系数是;第四项的系数是4、单项式多项式统称为整式. 整式是代数式的一部分;在代数式中可以包含加;减;乘;除四种运算;但在整式中除数不能含有字母.练习:1、某商品售价为 a 元;打八折后又降价20 元;则现价为 _元2、橘子每千克a 元;买10 kg 以上可享受九折优惠;则买20

19、千克11 / 27 付 _元钱 .3、如 ; 1 需 4 根火柴; 2 需_根火柴; 3 需_根火柴; n 需 _根火柴 .( 1)( 2)( n)4、温度由 t 下降 3后是 _.5、 机每小 行a 千米;火 每小 行 b 千米; 机的速度是火 速度的 _ 倍.6、无 a 取什么数;下列算式中有意 的是()a.1b. 1c.1 a 1d.1a1a22 a 17、全班同学排成 方形 ;每排的同学数 ;排数比每排同学a数的 3 倍 多 2;那么全班同学数 ()a. a 3a 2b.a (3a 2)c. a 3a 2d.3a ( a 2)8、填空x2 y 的系数 _;次数 _: 3a 2b2的次数

20、31为_ ; ab 2 的系数是; x2的系数是;x2 的2系数是;代数式 5xy x2x 1 有 ;第二 的系数是;第三 的系数是;第四 的系数是9、下列不是代数式的是()a. 0b . sc .x 1d .x 0.1y2t三、合并同 1、同 :所含字母相同;并且相同字母的指数也相同的 叫做同 .注意: 同 有两个条件:a. 所含字母相同;b. 相同字母的指数12 / 27也相同 .同类项与系数无关;与字母的排列顺序无关;几个常数项也是同类项.如: 100a 和 200a;240b 和 60b; -2ab 和 10ba2、合并同类项法则:把同类项的系数相加;字母和字母的指数不变 .合并同类项

21、法则:( 1)写出代数式的每一项连同符号;在其中找出同类项的项;( 2)合并同类项:同类项的系数相加 , 所得的结果作为系数 , 字母和字母的指数不变 .( 3)不同种的同类项间;用“ +”号连接( 4)没有同类项的项;连同前面的符号一起照抄如:合并同类项 3x2y 和 5x2y;字母 x、y 及 x、y 的指数都不变;?只要将它们的系数 3 和 5 相加;即 3x2y+5x 2y=( 3+5)x2y=8x2y3 合并同类项的步骤: ( 1)准确的找出同类项(2)运用加法交换律;把同类项交换位置后结合在一起(3)利用法则;把同类项的系数相加;字母和字母的指数不变(4)写出合并后的结果4. 注意

22、 : ( 1)不是同类项不能合并( 2) 求代数式的值时 ,如果代数式中含有同类项, 通常先合并同类项再代入数值进行计算 .例 1. 判断下列各组中的两个项是不是同类项:22b22和( 1) 2 a b 和 - 5 a( 2)2m np 和 -pm n (3) 037-1例 2.下 列 各 组 中 : 5x 2 y与 1 xy ;55 x 2 y与 1 yx 2 ;5ax 2 与 1 yx 2 ;83 与 x 3 ;x2 与5513 / 271 x2 ; 3x2 与 x 3x2 与 2 ; 同 类 项 有21(填序号)例 3. 如果xky 与 1 x2y 是同类项;则 k=_ ; 1 xky+

23、( -1 x2y)=_3333例 4直接写出下列各式的结果:( 1 ) - 1xy+ 1 xy=_ ;( 2 ) 7a2b+2a2b=_ ;( 3 )22-x-3x+2x=_ ;( 4) x2y- 1 x2y- 1 x2y=_; ( 5) 3xy2-7xy 2=_2 3例 5合并下列多项式中的同类项( 1) 4x2y-8xy 2+7-4x 2y+10xy 2-4 ;(2) a2-2ab+b 2+a2+2ab+b2( 3) 3x25x6x21(4) 6xy22x24x2 y5yx2x2例 6. 若 x0, y 0 ; 1 xy 2axy20;则 a2练习 :1、单项式2a xb2 与 a 3b

24、y 是同类项;则 x; y2、下列各组中:5 x 2 y与 1 xy ;5 x 2 y与 1 yx 2 ; 5ax 2 与 1 yx 2 ; 8 3 与 x 3 ; x2 与 1555x2 ; 3x2与 x 3x2 与 2 ; 同 类 项 有2(填序号)3、合并同类项: 3x25x6x21 6xy22x24x2 y 5yx2x24、若 x 0, y 0 ; 1 xy2axy20;则 a2四、去括号法则1、 根据去括号法则去括号:( 1)括号前是“ +”号;把括号和前面的“+”号去掉;括号里的14 / 27各项的符号都不改变.( 2)括号前是“”号;把括号和前面的“”号去掉;括号里的各项都要改变

25、符号 .2、 根据去括号法则中乘法分配律的应用去括号:若括号前有因式;应先利用乘法分配律展开;同时注意去括号时符号的变化规律.3、 多重括号的化简原则:( 1)由里向外逐层去掉括号( 2)由外向里逐层去掉括号注意:1、添括号法则添“”号和括号;添到括号里的各项符号都不改变;添“”号和括号;添到括号里的各项符号都要改变.2、整式的运算:整式的加减法: ( 1)去括号;( 2)合并同类项 .例 1、一个两位数;十位数字是 x ;个位数字比十位数字 2 倍少 3;这个两位数是例 2、去括号;合并同类项( 1) 3( 2s 5) +6s(2)3x 5x ( 1 x4) 2( 3 ) 6a2 4ab 4

26、(2a 2+ 1 ab)( 4 )23(2x 2xy)4( x2xy 6)( 5 )(xy) (x y)( 6 )2( m n)3(mx)2x( 7 ) 2x 23x1(53xx2 )( 8 )15 / 27( 2a 2 13a)4(aa 21)22( 9 ) a (5a3b) 2( a 2b)( 10 )1 m2 n nm21 mn21 n2 m326练习:1、化简:( xy)(xy) 2( m n)3(mx)2x2、一个两位数;十位数字是x ;个位数字比十位数字2 倍少 3;这个两位数是3、化简: (1) 223x1 (53x2 )(2)2121xx( 2a3a) 4(a a)22(3)a

27、(5a3b)2( a2b)(4)1 m 2 n nm21 mn 21 n2 m326五、代数式求值先化简;再求值代数式求值:1、用具体的数值代替代数式中的字母;按照代数式的运算关系计算;所得的结果是代数式的值.2、求代数式的值时应注意以下问题:( 1)严格按求值的步骤和格式去做( 2)一个代数式中的同一个字母;只能用同一个数值代替;若有多个字母; ?代入时要注意对应关系;千万不能混淆( 3)在代入值时;原来省略的乘号要恢复;而数字和其他运算符号不变( 4)字母取负数代入时要添括号( 5)有乘方运算时;如果代入的数是分数或负数;要加括号16 / 27例 1当 x= 1 ;y=-3 时;求下列代数

28、式的值: ( 1)3x 2-2y 2+1; (2)( xy)2xy13例 2当 x2 时;求代数式5x(4 x1) 的值例 3已知 a, b 互为倒数; m, n 互为相反数;求代数式(2 m2n3ab)2的值例 4化简;求值: 9ab6b 23( ab2 b2 ) 1;其中 a1 ; b 132 1 x 2(x1 y 2 ) (3 x1 y2 ) , 其中 x2, y223233经典例题例题 1. 若 abx 与 ayb2 是同类项;下列结论正确的是()a x2;y=1bx=0; y=0cx 2; y=0d、x=1;y=1例题 2.2x x 等于()a xb xc 3x d 3x例题 3.x

29、 ( 2x y)的运算结果是()a x+y b x yc x y d 3xy练习 :1、当 x2 时;求代数式5x(4 x1) 的值2、已知 a, b 互为倒数;m,n 互为相反数;求代数式(2 m2n3ab)2 的17 / 27值3、已知 m n2, 求 7 3m3n 的值 .34、化简;求值: 9ab 6b 23( ab2 b2 ) 1;其中 a1 ; b 132 1 x 2(x1 y 2 ) (3 x1 y2 ) , 其中 x2, y2232335、已知 ax2 y 2xy21; b 2x2 y xy2 1,x2, y1 ;求 2a b2六、探索规律列代数式例题 1. 观察下列数表:根据

30、数表所反映的规律;猜想第6 行与第 6 列的交叉点上的数应为 _;第 n 行与第n 列交叉点上的数应为_(用含有 n 的代数式表示; n 为正整数)例题 2. 观察下列各等式:( 1)以上各等式都有一个共同的特征:某两个实数的一等于这两个实数的 _;如果等号左边的第一个实数用x 表示;第二个实数用y 表示;那么这些等式的共同特征可用含x; y 的等式表示为_.( 2 ) 将 以 上 等 式 变 形 ; 用 含y的 代 数 式 表 示x为18 / 27_;( 3)请你再找出一组满足以上特征的两个实数;并写出等式形式: _例题 3. 一串有黑有白; 其排列有一定规律的珠子;被盒子遮住一部分如图 1

31、33 所示;则这串珠子被盒子遮住的部分有_颗第四章平面图形及其位置关系备注:这一章重要是为后面几何打基础:1、重点在平行的性质与证明.2、同旁内角、内错角、同位角的定义(这个有些学生在开始的时候会出现小失误后面没什么问题)3、垂线的性质与判定线段、射线、直线1、线段: 绷紧的琴弦;人行横道线都可以近似的看做线段. 线段有两个端点 .2、射线: 将线段向一个方向无限延长就形成了射线. 射线有一个端点 .3、直线:将线段向两个方向无限延长就形成了直线. 直线没有端点 .4、点、直线、射线和线段的表示19 / 27在几何里;我们常用字母表示图形.一个点可以用一个大写字母表示.一条直线可以用一个小写字

32、母表示或用直线上两个点的大写字母表示 .一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面) .一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示 .名图形表示方端长度称法点直l直线无无法ab( 或)线abba端点度量直 线 l射om射线 om1无法线个度量线l线段2可度ab( 或)段abba个量长度线段 l5、点和直线的位置关系有两种:点在直线上;或者说直线经过这个点.点在直线外;或者说直线不经过这个点.6、直线的性质( 1)直线公理:经过两个点有且只有一条直线.( 2)过一点的直线有无数条 .( 3)直线是是向两方面无限延伸的;无端点;不可度量;不能比

33、20 / 27较大小 .( 4)直线上有无穷多个点 .( 5)两条不同的直线至多有一个公共点.7、线段的性质( 1)线段公理:两点之间的所有连线中;线段最短.( 2)两点之间的距离:两点之间线段的长度;叫做这两点之间的距离 .(点到直线的垂线段的长叫做点到直线的距离;平行线间垂线段的长叫做平行线间的距离. )( 3)线段的中点到两端点的距离相等.( 4)线段的大小关系和它们的长度的大小关系是一致的.8、线段的中点:点 m把线段 ab分成相等的两条相等的线段am与 bm;点 m叫做线段 ab的中点 .am = bm =1/2ab(或 ab=2am=2bm).9、角:有公共端点的两条射线组成的图形

34、叫做角;两条射线的公共端点叫做这个角的顶点;这两条射线叫做这个角的边. 或:角也可以看成是一条射线绕着它的端点旋转而成的.10、平角和周角:一条射线绕着它的端点旋转;当终边和始边成一条直线时;所形成的角叫做平角. 终边继续旋转;当它又和始边重合时;所形成的角叫做周角.11、角的表示角的表示方法有以下四种:用数字表示单独的角;如1; 2; 3 等.用小写的希腊字母表示单独的一个角;如;21 / 27等 .用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角;如 b; c 等 .用三个大写英文字母表示任一个角;如 bad; bae; cae等 . 注意:用三个大写英文字母表示角时; 一定要

35、把顶点字母写在中间;边上的字母写在两侧.12、角的度量角的度量有如下规定:把一个平角180 等分;每一份就是1度的角;单位是度;用“”表示;1 度记作“ 1”;n 度记作“n”.把 1的角 60 等分;每一份叫做1 分的角; 1 分记作“ 1” .把 1 的角 60 等分;每一份叫做1 秒的角; 1 秒记作“ 1” .1 =60; 1 =60”13、角的性质( 1)角的大小与边的长短无关;只与构成角的两条射线的幅度大小有关 .( 2)角的大小可以度量;可以比较( 3)角可以参与运算 .时针问题:(小学奥数)时针每小时 30;每分钟 0.5 ;分针每分钟 6;时针与分针每分钟差 5.5 .时针与

36、分针夹角 =分 5.5 时 30 (分针靠近 12 点)时针与分针夹角 =时 30分 5.5 (时针靠近 12 点)若结果大于 180;另一角度用 360减这个角度 .经过多少时间重合、垂直、在一条线上;用求出的重合、垂直、在一条线上的时间减去现在的时间. 追及问题还可用追及度数/5.5.22 / 2714、角的平分线从一个角的顶点引出的一条射线;把这个角分成两个相等的角;这条射线叫做这个角的平分线.15、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形;叫做多边形.从一个n 边形的同一个顶点出发;分别连接这个顶点与其余各顶点;可以画(n-3 )条对角线;把这个n 边形分割成

37、( n-2 )个三角形 .n 边形内角和等于( n-2 ) 180. 正多边形(每条边都相等;每个内角都相等的多边形)的每个内角都等于(n-2 ) 180 /n.过 n 边形一个顶点有(n-3 )条对角线; n 边形共( n-3 ) n / 2条对角线16、圆:(1)平面上;一条线段绕着一个端点旋转一周;另一个端点形成的图形叫做圆. 固定的端点o称为圆心;线段 oa的长称为半径的长(通常简称为半径).(2)圆上任意两点a、b 间的部分叫做 圆弧 ;简称弧;读作“圆弧ab”或“弧ab”;(3)由一条弧 ab和经过这条弧的端点的两条半径oa、 ob所组成的图形叫做扇形 .(4)顶点在圆心的角叫做圆

38、心角 .15、平行线:在同一个平面内;不相交的两条直线叫做平行线. 平行用符号“”表示;如“ab cd”;读作“ ab平行于 cd” .注意:23 / 27( 1)平行线是无限延伸的;无论怎样延伸也不相交.( 2)当遇到线段、射线平行时;指的是线段、射线所在的直线平行 .16、平行线公理及其推论平行公理:经过直线外一点;有且只有一条直线与这条直线平行.推论:如果两条直线都和第三条直线平行;那么这两条直线也互相平行 .补充平行线的判定方法:( 1)平行于同一条直线的两直线平行.( 2)在同一平面内;垂直于同一条直线的两直线平行.( 3)平行线的定义 .17、垂直:两条直线相交成直角;就说这两条直线互相垂直. 其中一条直线叫做另一条直线的垂线;它们的交点叫做垂足.直线 ab;cd互相垂直;记作“ab cd”(或“ cd ab”) ;读作“ ab垂直于 cd”(或“ cd垂直于 ab”) .18、垂线的性质:性质 1:平面内;过一点有且只有一条直线与已知直线垂直.性质 2:直线外一点与直线上各点连接的所有线段中;垂线段最短 .简称:垂线段最短.19、点到直线的距离:过 a 点作 l 的垂线;垂足为b 点;线段ab的长度叫做点a 到直线 l 的距离 .20、同一平面内;两条直线的位置关系:相交或平行 .第五章一元一次方程24 / 27备注:解方程在小学已经学了很多了;现在算是加深与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论