




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、. NANCHANG UNIVERSITY 课程名称: 学术英语 题 目: A Study of Energy Efficient _ Cloud Computing Powered by_Wireless Energy Transfer _英语班级: 理工1615班 专业/年级: 物联网工程 161班 姓名/学号: (47) 二零一八年六月.A Study of Energy Efcient Mobile Cloud Computing Powered by Wireless Energy TransferAbstractAchieving long battery lives or eve
2、n self-sustainability has been a long standing challenge for designing mobile devices. This study presents a novel solution that seamlessly integrates two technologies, mobile cloud computing and microwave power transfer (MPT), to enable computation in passive low-complexity devices such as sensors
3、and wearable computing devices. Specifically, considering a single-user system, a base station (BS) either transfers power to or offloads computation from a mobile to the cloud; the mobile uses harvested energy to compute given data either locally or by offloading. A framework for energy efficient c
4、omputing is proposed that comprises a set of policies for controlling CPU cycles for the mode of local computing, time division between MPT and offloading for the other mode of offloading, and mode selection. Given the CPU-cycle statistics information and channel state information (CSI), the policie
5、s aim at maximizing the probability of successfully computing given data, called computing probability, under the energy harvesting and deadline constraints. Furthermore, this study reveals that the two simple solutions to achieve the object to support computation load allocation over multiple chann
6、el realizations, which further increases the computing probability. Last, the two kinds of modes suggest that the feasibility of wirelessly powered mobile cloud computing and the gain of its optimal control. And the future aspect to study is simply to be answer. Key words: wireless power transfer; e
7、nergy harvesting communications; mobile cloud computing; energy efficient computing.Introduction Mobile cloud computing (MCC) as an emerging computing paradigm integrates cloud computing and mobile computing to enhance the computation performance of mobile devices. The objective of MCC is to extend
8、powerful computing capability of the resource-rich clouds to the resource-constrained mobile devices (e.g., laptop, tablet and smartphone) so as to reduce computation time, conserve local resources, especially battery, and extend storage capacity. To achieve this objective, MCC needs to transfer res
9、ource-intensive computations from mobile devices to clouds, referred to as computation offloading. The core of computation offloading is to decide on which computation tasks should be executed on the mobile device or on the cloud, and how to schedule local and cloud resource to implement task offloa
10、ding. The explosive growth of Internet of Things (IOT) and mobile communication is leading to the deployment of tens of billions of cloud-based mobile sensors and wearable computing devices in near future (Huang & Chae, 2010). Prolonging their battery lives and enhancing their computing capabilities
11、 are two key design challenges. They can be tackled by two promising technologies: microwave power transfer (MPT) for powering the mobiles computation-intensive tasks from the mobiles to the cloud and mobile computation offloading (MCO). Two technologies are seamlessly integrated in the current work
12、 to develop a novel design framework for realizing wirelessly powered mobile cloud computing under the criterion of maximizing the probability of successfully computing given data, called computing probability. The framework is feasible since MPT has been proven in various experiments for powering s
13、mall devices such as sensors or even small-scale airplanes and helicopters. Furthermore, sensors and wearable computing devices targeted in the framework are expected to be connected by the cloud- based IOT in the future, providing a suitable platform for realizing MCO.Materials MCO has been an acti
14、ve research area in computer science where research has focused on designing mobile-cloud systems and software architectures, virtual machine migration design in the cloud and code partitioning techniques in the mobiles for reducing the energy consumption and improving the computing performance of m
15、obiles. Nevertheless, implementation of MCO requires data transmission and message passing over wireless channels, incurring transmission power consumption. The existence of such a tradeoff has motivated cross-disciplinary research on jointly designing MCO and adaptive transmission algorithms to max
16、imize the mobile energy savings. A stochastic control algorithm was proposed for adapting the offloaded components of an application to a time-varying wireless channel. Furthermore, multiuser computation offloading in a multi-cell system was explored by Shinohara (2014), where the radio and computat
17、ional resources were jointly allocated for maximizing the energy savings under the latency constraints.According to Swan (2012), the threshold-based offloading policy was derived for the system with intermittent connectivity between the mobile and cloud. Lastly, the CPU-cycle frequencies are jointly
18、 controlled with MCO given a more skilled and increasingly appropriate.wireless channel. The framework is further developed in the current work to include the new feature of MPT (Kosta et al., 2012). This introduces several new design challenges. Among others, the algorithmic design of local computi
19、ng and offloading becomes more complex under the energy harvesting constraint due to MPT, which prevents energy consumption from exceeding the amount of harvested energy at every time instant. Another challenge is that MPT and offloading time share the mobile antenna and the time division has to be
20、optimized.Now the technology is being further developed to power wireless communications. This has resulted in the emergence of an active field called simultaneous wireless information and power transfer (SWIPT). The MPT technology has been developed for point-to-point high power transmission in the
21、 past decades (Brown, 1984). Furthermore, existing wireless networks such as cognitive radio and cellular networks have been redesigned to feature MPT. Most prior work on SWIPT aims at optimizing communication techniques to maximize the MPT efficiency and system throughput. In contrast, the current
22、work focuses on optimizing the local computing and offloading under a different design criterion of maximum computing probability (Huang & Lau, 2014).Methods and ResultsConsider a single-user system comprising one multi-antenna base station (BS) using transmit/receive beamforming for transferring po
23、wer to a single-antenna mobile or relaying offloaded data from the mobile to the cloud. To compute a fixed amount of data, the mobile operates in one of the two available modes: Local computing and offloading: in the mode of local computing, MPT occurs simultaneously as computing based on the contro
24、llable CPU-cycle frequencies. Nevertheless, in the mode of offloading, the given computation duration is adaptively partitioned for separate MPT and offloading since they share the mobile antenna (Shinohara, 2014). Assume that the mobile has the knowledge of statistics information of CPU cycles and
25、channel state information (CSI). The individual modes as well as mode selection are optimized for maximizing the computing probability under the energy harvesting and deadline constraints. For tractability, the metric is transformed into equivalent ones, namely average mobile energy consumption and
26、mobile energy savings, for the modes of local computing and offloading, respectively. Compared with the prior work, the current work integrates MPT with the mobile cloud computing, which introduces new theoretical challenges. In particular, the energy harvesting constraint arising from MPT makes the
27、 optimization problem for local computing non-convex. To tackle the challenge, the convex relaxation technique is applied without compromising the optimality of the solution. It is shown in the sequel that the local computing policy is a special case of the current work where the transferred power i
28、s sufficiently high by Swan (2012). Furthermore, the case of dynamic channel for mobile cloud computing is explored. Approximation methods are used for deriving the simple and close-to-optimal policies.Mobile mode selection: The above results are combined to select the mobile mode for maximizing the
29、 computing probability. Given feasible computing in both modes, the only one.yielding the larger energy savings is preferred and the selection criterion is derived in terms of thresholds on the BS transmission power as well as the deadline for computing (Huang et al., 2012).Optimal data allocation f
30、or a dynamic channel: Last, the above results are extended to the case of a dynamic channel, modeled as independent and identically distributed. block fading, and non-causal CSI at the mobile (acquired from e.g., channel prediction). The problem of optimizing an individual mobile mode (local computi
31、ng or offloading) is formulated based on the master-and-slave model using the same metric as the fixed-channel counterpart (Kumar & Liu, 2013). ConclusionWireless and mobile computing technologies provide more possibilities for accessing services conveniently. Mobile devices will be improved in term
32、s of power, CPU, and storage. Mobile cloud computing has emerged as a new paradigm and extension of cloud computing.By two kinds of available modes, we can purely know of the Energy Efcient Mobile Cloud Computing. Through my study for the Mobile Cloud Computing, we are here exposing two simple solut
33、ions to solve this problem. Although my research is pretty basic, it still benefit the process of the development for mobile cloud computing and how to make it energy efficient. We believe that exploring other alternatives, such as introducing a middleware based architecture using an optimizing offl
34、oading algorithm, could help better the available frameworks and provide more efficient and more flexible solutions to the MCC users. We know that the kind of technology will play an increasing important role in our daily life in the future. By this study, we better know of the newest development in
35、 our science area. This work can be extended to several interesting directions: First, full-duplex transmission can be implemented in the pro- posed system to support simultaneous MPT and computation offloading to improve the power transfer efficiency. Second, the current work focusing on a single-c
36、omputing task can be generalized to the scenario of computing a multi-task program, which involves program partitioning and simultaneous local computing and offloading. Last, it is interesting to extend the current design for single-user mobile cloud computing system to the multiuser system that requires joint design of radio and computational resource allocation for mobil
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版智慧城市投资入股合同示范文本
- 2025年度预付款担保公司针对艺术品交易合同
- 2025殡葬服务绿色殡葬理念推广与应用合同
- 2025年度文化旅游区特色商铺租赁合作协议
- 2025年度高端企业市场分析及战略规划商务咨询服务合同
- 2025年度地铁隧道建设第三方监理合同范本
- 2025版体育馆室内篮球场租赁及配套器材供应合同
- 2025年特色民宿改造升级设计与施工合同
- 2025年度能源行业财务担保合同发行与会计处理规范
- 2025版新型生态绿化工程承包合同下载
- 《股骨颈骨折》课件
- YS/T 231-2007钨精矿
- GB/T 9113-2010整体钢制管法兰
- GB/T 18983-2017淬火-回火弹簧钢丝
- GB/T 15972.1-1998光纤总规范第1部分:总则
- 《夯实法治基石》设计 省赛一等奖
- 中国老年人功能性消化不良诊治共识解读专家版
- 工伤保险风险控制及操作指引课件
- 膜性肾病治疗指南课件
- 部编版六年级上册语文全册课件-002
- 遗传改造微生物制造食品和饲料的监管要求及欧盟授权案例分析
评论
0/150
提交评论