店铺租金的确定模型_第1页
店铺租金的确定模型_第2页
店铺租金的确定模型_第3页
店铺租金的确定模型_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、店铺租金的确定模型某商人欲在某火车站附近经营一店铺,委托本小组对相关情况进行调查。经过数月的资料收集和整理,我们的调查成果如下:进出车站的乘客为主要服务对象的10家便利店的数据。y是日均销售额,x1为店铺面积,x2是店铺距车站的距离,x3为店员人数,x4为店铺日租金。具体数据如下表:店铺代码日均销售额(元)y店铺面积(m2)x1离车站距离(100m)x2店员人数(人)x3店铺日租金(元)x4abcdefghij400045008000600050002000150090003000700060100855075557095456535213461325753545644600600102075

2、07504402801425450780数据来源:为了考察店铺面积、离车站距离、店员人数和日租金对日销售额的影响,我们首先做y关于x1、x2、x3、x4的回归,即建立如下回归模型:y=c+1 x1+2 x2+3 x3+4 x4得回归结果如下表:dependent variable: ymethod: least squaresdate: 12/14/03 time: 17:51sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c4815.267153

3、6.4183.1340870.0258x1128.193039.797963.2210960.0234x2-1494.966513.4078-2.9118480.0333x3-619.1674472.6664-1.3099460.2472x4-1.8772082.938471-0.6388380.5510r-squared0.970270 mean dependent var5000.000adjusted r-squared0.946486 s.d. dependent var2505.549s.e. of regression579.6124 akaike info criterion15

4、.86945sum squared resid1679752. schwarz criterion16.02074log likelihood-74.34724 f-statistic40.79489durbin-watson stat1.407218 prob(f-statistic)0.000522从回归结果来看, r2接近于1,整个方程的拟合优度很高,ff0.05(4,5)5.19,变量x3、x4对应的偏回归系数之t值小于2,而且x3、x4的符号与经济意义相悖,该模型明显存在多重共线性,回归结果不显著,回归方程不能投入使用。由于变量较多,采用逐步回归法来修正模型。用y对各个变量单独进行回

5、归:对x1,有:dependent variable: ymethod: least squaresdate: 12/14/03 time: 20:17sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c444.44442988.5550.1487160.8855x165.0793741.384151.5725670.1545r-squared0.236129 mean dependent var5000.000adjusted r-squared0.140645 s.d. de

6、pendent var2505.549s.e. of regression2322.680 akaike info criterion18.51569sum squared resid43158730 schwarz criterion18.57620log likelihood-90.57844 f-statistic2.472968durbin-watson stat1.988381 prob(f-statistic)0.154464对x2,有:dependent variable: ymethod: least squaresdate: 12/14/03 time: 20:20sampl

7、e: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c8687.5001096.2327.9248710.0000x2-1229.167324.6760-3.7858260.0053r-squared0.641777 mean dependent var5000.000adjusted r-squared0.596999 s.d. dependent var2505.549s.e. of regression1590.581 akaike info criterion17.75844sum

8、squared resid20239583 schwarz criterion17.81896log likelihood-86.79221 f-statistic14.33248durbin-watson stat2.488527 prob(f-statistic)0.005344对x3,有:dependent variable: ymethod: least squaresdate: 12/14/03 time: 20:28sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c

9、3344.8283791.3250.8822320.4034x3344.8276770.69640.4474230.6664r-squared0.024413 mean dependent var5000.000adjusted r-squared-0.097536 s.d. dependent var2505.549s.e. of regression2624.897 akaike info criterion18.76033sum squared resid55120690 schwarz criterion18.82084log likelihood-91.80164 f-statist

10、ic0.200188durbin-watson stat2.273575 prob(f-statistic)0.666436对x4,有:dependent variable: ymethod: least squaresdate: 12/14/03 time: 20:30sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c-124.4556691.7552-0.1799130.8617x47.2226300.8931328.0868540.0000r-squared0.89100

11、4 mean dependent var5000.000adjusted r-squared0.877380 s.d. dependent var2505.549s.e. of regression877.3734 akaike info criterion16.56860sum squared resid6158272. schwarz criterion16.62912log likelihood-80.84299 f-statistic65.39721durbin-watson stat1.099477 prob(f-statistic)0.000040从上面的回归结果可以看到,y对x2

12、的回归拟合最好,故选择该回归式为基本回归表达式。现在分别加入x1、x3、x4回归结果如下:加入x1,有:dependent variable: ymethod: least squaresdate: 12/14/03 time: 21:21sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c3641.214817.19384.4557530.0030x175.4584910.588697.1263260.0002x2-1307.769121.3087-10.780500.0000

13、r-squared0.956605 mean dependent var5000.000adjusted r-squared0.944206 s.d. dependent var2505.549s.e. of regression591.8273 akaike info criterion15.84763sum squared resid2451817. schwarz criterion15.93841log likelihood-76.23816 f-statistic77.15446durbin-watson stat1.809788 prob(f-statistic)0.000017可

14、见,加入x1效果较好,这样回归式中就有x1、x2两个变量了。在此基础上继续加入其他变量。加入x3,有:dependent variable: ymethod: least squaresdate: 12/14/03 time: 21:26sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c3993.580797.84105.0054840.0024x1109.374725.406914.3049200.0051x2-1181.338142.6370-8.2821300.0002x

15、3-647.0407446.8316-1.4480640.1978r-squared0.967843 mean dependent var5000.000adjusted r-squared0.951765 s.d. dependent var2505.549s.e. of regression550.2815 akaike info criterion15.74791sum squared resid1816859. schwarz criterion15.86895log likelihood-74.73956 f-statistic60.19526durbin-watson stat1.

16、281362 prob(f-statistic)0.000072可以看出,加入了x3以后引起了多重共线性,故剔除。现在加入x4,回归结果如下:dependent variable: ymethod: least squaresdate: 12/14/03 time: 21:29sample: 1 10included observations: 10variablecoefficientstd. errort-statisticprob. c4636.4821619.0772.8636580.0287x199.5763235.195072.8292690.0300x2-1674.283523.

17、5131-3.1981670.0186x4-2.2325263.095576-0.7211990.4979r-squared0.960067 mean dependent var5000.000adjusted r-squared0.940100 s.d. dependent var2505.549s.e. of regression613.2195 akaike info criterion15.96450sum squared resid2256229. schwarz criterion16.08553log likelihood-75.82249 f-statistic48.08356durbin-watson stat1.907328 prob(f-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论